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CHAPTER 1. INTRODUCTION

This chapter describes the motivation of the research and the review of literature, presents

a framework of the proposed methodology, and also gives the organization of the dissertation.

1.1 Background

In power system analysis, it is of interest to analyze the stability of the system for changing

parameter values. Power system may experience qualitative change in the behavior for certain

parameter values. This behavior can be predicted via bifurcation framework. The conventional

numerical procedure for obtaining the bifurcation behavior would involve the following two

phases: solving and tracing the equilibrium path, and identifying bifurcation points as well

as the directions of new branches. The first phase includes solving a system of nonlinear

equations by a predictor-corrector type of continuation method, whereas the second involves

determining the bifurcation points. In power system differential algebraic equations (DAE)

model, the change of equilibrium character with respect to bifurcation parameter is often

effectively studied by analyzing changes of the eigenvalues of system state matrix in response

to parameter variations. There are two common types of bifurcation points: Hopf bifurcation

(HB) and saddle-node bifurcation (SNB). When HB occurs, the system Jacobian has a simple

pair of purely imaginary eigenvalues, and there are no other eigenvalues on the imaginary

axis and the right half of the complex plane. As the parameter changes, certain inequality

conditions need to hold to ensure that this pair of critical eigenvalues cross the imaginary axis.

At SNB point, the Jacobian has a simple zero eigenvalue, and there is no other eigenvalue

on the imaginary axis. Usually, eigenvalue analysis is used, in which the potential critical

eigenvalues are observed with respect to the parameter variation. This results in a piecewise



www.manaraa.com

2

global small-disturbance stability analysis [1]. Fig. 1.1 shows the possible dynamic behaviors

one can observe for changing parameter values. Some of the phenomena are more critical than

others. It is useful if there is a systematic procedure to identify these phenomena, especially

HB and SNB in power systems.

Damping angle

Damping angle
Saddle-node 

bifurcation

Hopf bifurcation

Node-focus 

bifurcation

)Re(

)Im(
Modal resonance 

(subsynchronous 

resonance, etc.)

Least damping 

ratio eigenvalues

Least damping 

ratio eigenvalues

Figure 1.1 Different Dynamic Phenomena Related to Eigenvalues in Power
Systems.

Power systems are steadily growing with ever larger installed generation capacity. Formerly

separated systems are now interconnected. Modern power systems have evolved into systems

with a very large size, stretching out over thousands of miles. Furthermore, in a market-driven

environment with potential higher transmission system loading, greater variety of operating

points, and huge power transfer over long distances, the system may be forced to operate closer

to its stability limit. Increased electricity consumption in heavy load areas and environmental

pressure on the transmission expansion also cause the system to operate under much more
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stressed conditions than in the past. With the growth of interconnected power system, and

especially the deregulation of the power market, the problems related to small-signal stability

have become a critical issue for the power system security. Inter-area oscillation has been

found to be a common problem in large power systems worldwide. Many electric systems

have experienced poorly damped low-frequency inter-area oscillations as a result of system

growth and interconnection. For example, there was an oscillatory disturbance in the Eastern

Interconnection on June 12, 1992. The oscillatory instability is caused by Hopf bifurcation

following the loss of transmission lines [2]. The incident took operators more than half an hour

to take actions to suppress the oscillations. The power system outage that occurred in the

Western Interconnection on August 10, 1996 is related to oscillatory stability, too. Recently,

there was an oscillation incident in Central China Power Grid on October 29, 2005 which is

caused by low-frequency oscillation.

A direct result of the electromechanical oscillation is the subsequent oscillations in other

quantities such as the power flow on tie lines. Although the actual MW flow swings may be

within the acceptable range, their effects may lead to oscillations in voltages which could have

negative impact on the system performance. Furthermore, if not damped effectively, sustained

oscillation can lead to fatigue of machine shafts, limit power transfer over tie lines, reduce the

system stability margin, and cause serious control problems.

Damping also plays an important role in power system oscillatory stability since the damp-

ing ratio determines the decay rate of the oscillation. Fig. 1.2 shows the oscillations at the

Malin–Round Mountain #1 500 kV transmission line in the WECC (Western Electricity Co-

ordinating Council) system during the August 10, 1996 blackout [3]. It can be seen that the

final breakup was caused by the growing unstable oscillation which started at about 725 sec-

onds. This was due to decrease in system damping as a result of cascading events following

the trip of a 500 kV line. It takes about seven minutes starting from the first line tripping

till the whole system blackout. The entire WECC system were split into four islands with the

loss of approximately 30 GW of load. More than seven million customers were affected by

this catastrophic event [4]. The inter-area oscillations in the WECC system clearly identify
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inadequate damping as the primary factor leading to system separation. The time scale of the

blackout suggests that the potential oscillation problem may have been predictable if there is

an approach to efficiently calculate the critical eigenvalues with least damping ratios. Such

information is vital if operators are to maintain system security close to the system stability

limit. On July 12, 1996, the same WECC system experienced voltage collapse that is related

to saddle-node bifurcation.

11

August 10, 1996 Outage

Figure 1.2 Oscillations on the WECC System Blackout, Aug 10, 1996 [3].

For power systems operating under the deregulated market environment, the onset of os-

cillation problem due to critical eigenvalues is one operational constraint which already limits

bulk power transactions under some conditions. Better methods of analyzing the oscillations

would lead to more accurate determination of these limits and the ability to operate the power

system closer to the stability margin. An analytical tool to trace the movement of critical

eigenvalues with respect to the changing system conditions will help analyze and investigate

the cause of the problem. If an oscillation does occur, advice to the system operators or re-

liability coordinators on how to quickly suppress it would be very valuable. Furthermore, if
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the oscillatory stability margin and the damping margin can be pre-determined for a speci-

fied scenario which might happen in the real time, it will provide operators the user guide in

operating the power systems when dealing with the potential oscillation or damping problems.

Index Generator

Index Path

Figure 1.3 Dynamic Interactions in the WECC System [7].

The dynamics of the WECC system near 0.78 Hz has been an enigma for many years [5].

Abnormal behavior and strange results have always been linked to the possibility of a kind of

resonance between interacting eigenvalue modes. It has been discovered that the oscillation is

an inter-area mode due to the swing of the generators in the northwest and southwest against

the generators in the center of the Western Interconnection [6]. Fig. 1.3 shows the index

generators and paths for dynamic interactions in the system [7].

The WECC inter-area oscillation problem shows it is critical to investigate the mode (eigen-

value) interaction for dynamic power systems. Traditional approaches (such as the QR method)
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have the shortcomings to deal with these problems since they are time consuming and only

produce a set of discrete eigenvalues. Model reduction consists of replacing the original system

with one of a much smaller dimension [8]. It requires a good understanding of the phenomenon

in order to retain the system elements which are most relevant to it. How to efficiently iden-

tify mode interaction and modal resonance to provide more insight on the mechanism is an

important research problem. Can we come up with a heuristic procedure to address the modal

resonance and other dynamic phenomena in power systems?

For power system time-domain simulation, the trapezoidal method, which is an implicit

method, is widely used in order to maintain the A-stability of the system [9]. Although the

numerical stability is guaranteed for the implicit method, the computation is too costly and it

restricts the practical application to large power system simulation. Can we do something to

speed up the time-domain simulation?

Power System Stability

Rotor Angle Stability Frequency StabilityVoltage Stability

Transient Stability
Small-Disturbance 

Angle Stability

Small-Disturbance 

Voltage Stability

Large-Disturbance 

Voltage Stability

Short Term Long TermShort Term Long TermShort Term

Figure 1.4 Classification of Power System Stability [10].

According to IEEE/CIGRE report [10], Fig. 1.4 shows the classification of power system

stability according to different categories. As shown in the figure, the thesis will try to deal with

the eigenvalue-related small-signal stability problems with the help of a novel mathematical

approach. Small-disturbance or small-signal stability is concerned with the system response

to small changes and is a fundamental requirement for the satisfactory operation of power
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systems. The proposed definitions of different types of power system stability which will be

addressed are summarized as follows [10]:

• Small-disturbance (or small-signal) rotor angle stability is the ability of the power sys-

tem to maintain synchronism under small disturbances. In general, the disturbances are

considered to be sufficiently small and hence can be analyzed by considering the system

linearized at an equilibrium point represented by a steady state operating condition.

Small-signal rotor angle stability problems may be either local or global in nature ac-

cording to the scope of the oscillation and the oscillation frequency, and may be in the

form of either undamped electromechanical oscillations or monotonic rotor acceleration

leading to the loss of synchronism.

- Local mode oscillations are oscillations involve a small part of the power system, and

are usually associated with rotor angle oscillations of a single power plant against

the rest of the power system. Since the inertia constant of generator’s rotor mass

is big, the frequency of local oscillation is approximately within the range of 1 ∼ 2

Hz.

- Inter-area mode oscillations are caused by a group of generators in one area swinging

against a group of generators in another area. It usually occurs among two or more

close-coupled generators in a weak interconnection system. Therefore, the frequency

of inter-area oscillation is lower than that of local oscillation, and is roughly in the

range of 0.1 ∼ 0.7 Hz.

• Small-disturbance voltage stability refers to the system’s ability to maintain steady volt-

ages when subjected to small perturbations such as incremental changes in system load.

Its analysis is normally based on the linearized system dynamic equations using modal

analysis techniques.

Because the oscillations are a result of small perturbations, they are essentially linear in

nature and can therefore be analyzed by using linear system techniques. In the thesis, a

novel eigenvalue analysis method is proposed to analyze these stability problems associated
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with eigenvalues. Small-signal stability analysis can provide valuable insight into the dynamic

characteristics of any large system, and can assist in the design of controllers to mitigate

inter-area or local oscillatory modes of concern.

Small-signal analysis reveals the details about the participation of generators either in

groups or individually in the oscillations in terms of rotor angle, voltage, and frequency that

develop for various operating conditions. The study of inter-area mode oscillations identifies

specific clusters of generator locations that are responding coherently to the oscillations. By

producing a set of these participating generators, the technique naturally suggests a number

of candidate sites for the installation of power system stabilizer (PSS) or phasor measurement

unit (PMU). Similar studies that focus on different ranges of frequency oscillations can reveal

details into the individual generator that may oscillate against the rest of the power system

due to the subsynchronous resonance (SSR) of the electrical network.

1.2 Review of Literature

1.2.1 Eigenvalue Computation in Power System Analysis

Eigenvalues play an important role in power system stability analysis. Eigenvalues can be

used to determine the small-signal stability of the power systems. They are also good indicators

for the bifurcation points such as saddle-node bifurcation and Hopf bifurcation. Eigenvalues

and eigenvectors can be used to determine mode shapes, participation factors, controllability

and observability of each mode. Eigenvalues with the largest real parts and eigenvalues with the

least damping ratios are of great importance for power system applications. In power system

analysis, eigenvalues are widely used to study system uncertainty, estimate stability boundary,

and enhance system stability performance. Since eigenvalues are closely related to power

system stability, eigenvalue computation is a very active area in the power system literature.

Eigenvalue computation is a linear analysis technique based on the linearized model. Reference

[11] describes the recent applications of linear analysis techniques to control system design,

system identification, and large-scale system applications such as dynamic model reduction,

etc.
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Among all of the eigenvalue solver methods for general nonsymmetric matrices, the QR

algorithm is widely used due to its robustness and high accuracy. But the QR algorithm is

an algorithm for dense problems, it is inadequate for large systems, owing to the excessive

computation time and memory requirements. The QR method is not efficient when the order

of the state matrix is larger than 800. Round-off errors in power system matrices of order

over 1000 also become significant, and a subset of eigenvalues in the QR eigensolution may be

inaccurate. Therefore, significant effort has been expended to solve the problem by different

means. Moreover, in most of the applications, there is no need to calculate the whole set of the

eigenvalues like the QR algorithm does. Regarding the conventional eigenvalue computation

methods, Golub and van der Vorst [12] summarize the main research developments in the

computational methods for eigenvalue problems during the 20th century.

In general, the group of critical eigenvalues is usually a small subset in the whole spectrum.

Most of the early research was on accelerating the computation of these eigenvalues especially

for large systems. Several dominant sub-spectrum algorithms exist to serve this purpose such as

the power method, the inverse power method, subspace iteration, and the Arnoldi method [12],

etc. The efficiencies of dominant eigenvalue calculation methods are discussed and compared

in [13] and [14]. The matrix transformation for the dominant eigenvalues is described in [15].

Among all of the dominant eigenvalue computation algorithms, the Arnoldi method is believed

to be the most efficient approach. But the method is heavily influenced by the selection of

the number of guard vectors. The only way to explore this is by numerical tests. It has been

assumed that the dominant eigenvalue is the critical eigenvalue that will eventually cross the

imaginary axis [16], but this may not always be the case especially when the current operating

point is some distance away from the instability boundary. Moreover, it is pointed out in

[17] that very close eigenvalues or eigenvalues with multiplicity may cause the algorithm to

terminate prematurely.

Several other techniques have been developed that focus on evaluating a selected subset of

eigenvalues. One such technique is the AESOPS program originally proposed in [18], where the

acronym AESOPS stands for the Analysis of Essentially Spontaneous Oscillations in Power
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Systems. Similar to the frequency response method, it uses frequency response to calculate

eigenvalues associated only with rotor angle modes one at a time. The advantage is that

it always converges to the dominant mode of interest. Unlike the modified Arnoldi method

[19], AESOPS has the disadvantage of requiring repeated factorization of large matrices and

slow convergence due to its heuristic nature. An improved AESOPS algorithm based on

Newton-Raphson iteration was proposed in [20] to achieve fast convergence properties. The

selective modal analysis (SMA) method proposed in [21] computes eigenvalues associated with

selected modes of interest by using special techniques to identify variables that are relevant

to the selected modes, and then constructing a reduced-order model that involves only the

relevant variables. The PEALS (Program for Eigenvalue Analysis of Large Systems) described

in [22] and developed by EPRI (Electric Power Research Institute) and Ontario Hydro has

facilities for computing eigenvalues using the QR method, the AESOPS algorithm, and the

modified Arnoldi method. The NEVA small disturbance analysis tool in NETOMAC software

package developed by SIEMENS applies the inverse power method and Rayleigh quotient

method. Cayley transform-based S matrix method proposed in [23] is very efficient in finding

the unstable modes. STEPS (Sequential Two-state Eigenanalysis for Power Systems) program

is introduced in [24] for computing the eigenvalues belonging to a small study zone. Reference

[25] uses parallel processing-based Bi-iteration method to speed up the eigenvalue computation

in small-signal stability assessment.

In [26], various indices based on eigenvalues and singular values are proposed to detect and

predict oscillatory instabilities associated with Hopf bifurcation in power systems for online ap-

plication. Dobson et al. [27, 28] and Padiyar et al. [29] have studied the resonance phenomena

in power systems. Reference [27] investigates the inter-area power system oscillations in which

the oscillatory modes interact near a strong resonance, resulting in instability of one of the

modes. When a resonance occurs, the power system linearization has two complex conjugate

pairs of eigenvalues that coincide in both frequency and damping. If the linearization is not

diagonalizable at the resonance, the resonance is called a strong resonance. Otherwise, the res-

onance is called a weak resonance. Reference [27] further demonstrates that strong resonance
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is a precursor to oscillatory stability. Reference [28] mathematically analyzes generic pertur-

bations of two complex eigenvalues passing through a weak resonance where the modes are

decoupled and the eigenvalues do not interact. In [29], the strong resonance is characterized by

coincidence of both eigenvalues and eigenvectors, and weak resonance is characterized by coin-

cidence of eigenvalues only. When the system is near a strong resonance, the eigenvalues and

eigenvectors are very sensitive to parameter changes. A small parameter change might cause

the eigenvalues to move quickly and turn through approximately 90 degrees in the complex

plane [29], which brings difficulties for the conventional eigenvalue analysis.

In [30], invariant subspace method is used to compute a group of selected eigenvalues in

power systems. The invariant subspace method allows eigenvalues that are difficult to study

individually to be grouped into a subspace which can be handled quite efficiently. This is an

iterative process whose convergence depends on the initial value used. The paper also compares

the invariant subspace method with Newton’s method for eigenvalue computation. In power

system eigenvalue analysis, close eigenvalues computation is an issue to be dealt with since

it is common for power systems to have close eigenvalues due to similar generator dynamic

characteristics and many conventional methods will fail to converge in this case. For example,

Newton’s method will diverge since the matrix equation to be solved is ill-conditioned. But

even when the corresponding eigenvectors are ill-conditioned, the invariant subspace associated

with those close eigenvalues can be well determined. As a result, the invariant subspace-based

method should work well in such case. However, further work is needed for the proposed

method in [30]. First, it can only treat the explicit matrix for ordinary differential equation

(ODE) systems, and is not able to deal with the implicit equations directly for the DAE

systems. The sparsity of the Jacobian matrix will be lost during the matrix manipulation.

Second, for different parameter values, the same process needs to be repeated. Is there a way

to continuously track the movement of a number of specified eigenvalues with respect to system

parameter without recalculating all of the eigenvalues? The thesis will propose an eigenvalue

tracing method to facilitate the process.

Other existing methods, such as the modified Arnoldi method and simultaneous iteration
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method, are applied in [19] which uses the properties of invariant subspace to compute a subset

of eigenvalues and the corresponding eigenvectors of a matrix. It should be mentioned that the

sparsity matrix techniques can be applied to the proposed methods for small-signal stability

analysis. Reference [31] applies subspace iteration-based Jacobi-Davidson method to calculate

the rightmost eigenvalues. Reference [32] further applies inexact two-sided Jacobi-Davidson

method to compute the critical eigenvalues and corresponding eigenvector of power systems.

Instead of calculating all of the eigenvalues of the system state matrix, we can just calculate

some critical eigenvalues which are close to the imaginary axis and update them with respect

to system parameter change (load change, contingency, etc). Furthermore, it can also provide

inexpensive capabilities for an improved, more reliable detection of bifurcations in power sys-

tems. The continuation of invariant subspaces (CIS) provides us a useful tool to reduce the

system dimension and analyze the stability change as parameter varies [33, 34, 35, 36, 37, 38].

A generalized continuation method for the calculation of invariant subspace with any dimen-

sion is presented in [33]. It applies Newton’s method to the associated Riccati equation and

solves a Sylvester equation in each step. Similar method is used in [34] and [35].

Another scheme for the continuation of invariant subspaces is proposed in [36] and [37].

A continuation method for low-dimensional invariant subspaces of a parameterized family of

large and sparse matrices is presented in [36]. The continuation method provides bases of

the invariant subspaces depending smoothly on the parameter. From this information, the

corresponding eigenvalues can be computed efficiently. The predictor and corrector steps are

reduced to solve the bordered matrix equations of Sylvester type. A bordered version of the

Bartels-Stewart algorithm is developed to solve these equations. To trace the invariant sub-

spaces that contain all of the unstable and control modes, a combination of CIS and subspace

iterations preconditioned by a projected Cayley transform is proposed in [37].

Reference [38] first applied CIS to the eigenvalue analysis in power system applications. In

[38], a bordered version of the Bartels-Stewart algorithm is used to trace the critical eigenvalues

of power system. The Cayley transform is used to map the rightmost eigenvalues to the

eigenvalues with largest moduli, and the projected Arnoldi method is then applied to calculate
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these eigenvalues. In [39], the derivative-based method is applied to power system oscillatory

stability analysis. From the eigenvalue sensitivities information, an eigenvalue index is derived

to identify the rate of change and the direction of the eigenvalues movement with respect to

change in any parameter p of interest. But at parameter values where eigenvalue λi(p) is

a multiple eigenvalue, λi(p) may not be differentiable, and it may be impossible to define a

continuous right eigenvector. In the cases of multiple eigenvalues, or at the point of double

real eigenvalues splitting into a pair of complex eigenvalues, the derivatives of the eigenvalues

and eigenvectors vanish. In addition, when computing the derivatives numerically, a simple

eigenvalue that is close to others may behave like a defective one [40]. The eigenvectors may be

nearly linearly dependent, making some numerical schemes for the computation of derivatives

badly behaved [41].

Many power system dynamic phenomena, such as strong resonance, et al., are related

to the interaction of eigenvalues. The resonance in power system is basically caused by the

interaction of different oscillatory modes, such as the coupling between the swing mode and the

exciter mode as the automatic voltage regulator (AVR) parameters vary, or the modal coupling

between the subelectrical mode (EM) and the torsional mode (TM) which results in a special

power system phenomenon called SSR [42]. There are several techniques proposed to study the

SSR phenomenon [42, 43, 45]. The most common approaches are eigenvalue analysis, frequency

scanning, and numerical time-domain simulation. For eigenvalue analysis, it is computationally

intensive. Although for large systems, there is selected eigenvalue calculation method available

to calculate a specified set of eigenvalues [13], this method requires a skilled and experienced

analyst in order to be effective [45]. Moreover, it is not very efficient to deal with the SSR

problem since the EM and TMs do not have a common defined criterion and are difficult to

be calculated separately by the conventional methods.

Eigenvalue sensitivity is a very useful concept in system analysis, ranking locations, and

design of power system controller, such as series compensator [46], PSS [47], and HVDC (High-

Voltage Direct Current) control [48], etc. Sensitivity analysis has been applied extensively to

many power system stability and control problems. It is a valuable tool for the analysis,
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planning, and operation of power systems. It includes but is not limited to the following:

identification of the causes of stability problems and the weak lines; optimal tuning of control

parameters; determination of the locations of compensating devices for stability enhancement

such as capacitor compensation and FACTS (Flexible AC Transmission System) devices [49].

Various approaches have been proposed in the literature to calculate eigenvalue sensitivities

[20, 26, 46, 47, 48, 50, 51, 52, 53, 54, 55]. The first-order eigenvalue sensitivity analyze has been

proposed for voltage contingency ranking in [53] and voltage stability analysis in [56]. Refer-

ence [26] proposes an eigenvalue sensitivity-based index to predict and detect the oscillatory

instabilities associated with the Hopf bifurcation in power systems. Reference [55] proposes

the sensitive pole algorithm (SPA) to compute the eigenvalues most sensitive to parameter

changes in large-scale power system matrices. References [57] and [58] apply eigenvalue sen-

sitivity to calculate the feasibility boundary. Reference [57] proposes an iterative method to

compute the Hopf bifurcation using eigenvalue sensitivity to get the zero real part for a cer-

tain oscillatory mode. Reference [58] proposes a similar iterative procedure to calculate the

stability margin boundary. An effective method to calculate eigenvalues as well as eigenvalue

sensitivities in a DAE system is required in order to efficiently identify the stability region.

Reference [49] proposes a second-order eigenvalue sensitivity algorithm using only a particular

dominant eigenvalue and the corresponding eigenvector. Probabilistic eigenvalue sensitivity

was proposed and applied to PSS design in [47] and [59] to overcome the robustness problem

of the conventional control design methods.

1.2.2 Application of Invariant Subspace-Based System Partition

Time-domain simulation is an important tool for power system dynamic analysis. It in-

cludes a step-by-step numerical integration of DAEs. Numerical integration methods can be

classified into two categories: explicit methods and implicit methods. The explicit methods

involve fixed-point iterations. They are computationally efficient but have numerical stabil-

ity problem when dealing with stiff systems. The implicit methods involve solving nonlinear

equations at each step. They are slow but stable. Implicit methods are commonly used for
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running power system dynamic simulation. Numerous research effort has been made to im-

prove the computational efficiency. In [60], the trapezoidal method is improved by reducing a

large nonlinear system into two small systems to study the post fault power system dynamics

for prediction use, and Newton’s method is used to solve each small system.

Power system is a very stiff system, basically it is costly to analyze the system directly. Since

the stiff part is only a small part compared with the dimension of whole system, we can build

an invariant subspace with respect to the stiff part and decompose the system subsequently

[9]. The original power system equations are decoupled into two parts that correspond to the

stiff and non-stiff subspaces. For the stiff invariant subspace, the implicit method is applied

to achieve the numerical stability. The explicit method is employed to handle the non-stiff

invariant subspace for the mathematical efficiency. As a result, the new hybrid method is

both numerically stable and computational efficient. This yields an invariant subspace-based

decoupled method for power system time-domain simulation [9]. The decoupled method can be

used for both small-signal stability analysis and transient stability analysis. For the decoupled

method, one question needs to be solved is the calculation and update of invariant subspaces

to split the stiff system. In [9], the invariant subspace is calculated by the Arnoldi method

after spectral transformation. The eigenvalue computation is very expensive. Furthermore, as

parameter changes, it will cause the system eigenvalues to change, so the invariant subspace

needs to be repeatedly calculated and updated. The update of invariant subspace is costly too

for the same reason. An efficient update of invariant subspace is proposed in the thesis based

on the work by Shroff and Keller in [61].

1.2.3 Application of the Continuation Method

This section provides continuation method-related literature review since it plays a major

part in the proposed methodology. The continuation method is a predictor-corrector method

widely used in power systems to overcome singularity problem.

The best known application of the continuation method in power system is the continuation

power flow (CPF). Reference [62] first proposed CPF to find the SNB point or critical point of
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power system power flow equations for steady-state voltage stability analysis. The continua-

tion method-based power flow calculation remains well-conditioned at and around the critical

point, and can avoid the singularity problem for the traditional power flow methods (such as

Newton’s method, et al.). The basic idea is the introduction of one continuation parameter.

The continuation process mainly includes two parts: the predictor and the corrector. More-

over, the tangent vector achieved from the predictor in CPF includes bus voltage angles (dδi)

and magnitudes (dVi) in response to a different load change. The sensitivity information can

be obtained from the tangent vector at each iteration, which can be used as voltage stability

index to determine the weakness part of potential voltage stability problem in power systems.

Reference [63] is a further research result of the CPF paper [62]. It combines the contin-

uation method and optimization scheme together to investigate the reactive power planning

strategy when considering voltage collapse. In the paper, bus sensitivities and branch sensitivi-

ties are introduced and described in detail. The bus sensitivity indicates how weak a particular

bus is near the critical point, which is the same as the voltage stability index proposed in [62].

The branch sensitivity is the derivative of the power loss in any line to the parameter. It

indicates how important one particular branch is to the voltage stability. Similarly, generator

reactive sensitivity is also proposed, which shows how the reactive power output of a generator

is affected by the change of parameter.

Reference [64] applies the continuation method for direct equilibrium tracing to identify the

voltage collapse. It simultaneously solves the system DAEs to obtain the equilibrium point,

since all of the differential parts equal to zero at the steady state. Combined with a parameter-

ized continuation technique, the methodology identifies the voltage collapse during the direct

equilibrium tracing, without rebuilding the system dynamic Jacobian and checking its singular-

ity. This significantly reduces the computational cost. With this approach, the PV buses and

slack bus assumptions are no longer needed. Reference [65] presents continuation-based quasi-

steady-state (CQSS) analysis to investigate the long-term voltage stability. Quasi-steady-state

(QSS) simulation combined with continuation method can provide good convergence when the

system approaches the bifurcation points. It can also readily identify the singularity-induced
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bifurcation (SIB) in the long-term time scale.

The application of continuation method and other computational techniques in power sys-

tem analysis (especially voltage stability assessment) has been summarized in [66].

1.3 Motivation

To deal with the above challenging problems, the thesis presents a novel comprehensive

framework of invariant subspace-based methods for power system computation and analysis

[67, 68, 69, 70, 71, 72, 73]. The improved continuation of invariant subspace (ICIS) is proposed

which provides a mathematical tool for the stability analysis. The ICIS method allows us

to trace the movement of any set of critical eigenvalues (rightmost eigenvalues, eigenvalues

with least damping ratio, etc.) as parameter changes. The application of the ICIS method

to identify various interacting dynamic phenomena will also be investigated. The successive

eigenvalue sensitivities extracted from ICIS can be used for efficient identification of oscillatory

stability margin and damping margin in power systems. A continuation method-based unified

approach which combines the equilibrium point tracing and eigenvalue tracing is also proposed

for critical eigenvalue tracing, bifurcation analysis, and voltage stability margin identification.

The recursive projection method (RPM) [61, 74] can be used for efficient calculation and update

of invariant subspace for the decoupled time-domain simulation [9]. The invariant subspace-

based decoupled time-domain simulation method combines the implicit and explicit methods

to realize the advantages of both methods [9]. Finally, we propose a comprehensive invariant

subspace-based framework to systematically address various aspects that are related to power

system steady state and dynamic phenomena as shown in Fig. 1.5.

This framework can be used to trace power system equilibrium points, to trace a set of

critical eigenvalues of interest, and to trace time-domain trajectories. With this diagnostic

tool, one can systematically identify various interacting power system dynamic phenomena

of interest that include voltage collapse and oscillatory behavior, transient and QSS behavior

among others. It provides a novel eigenvalue analysis tool for tracing of poorly damped modes

and design of control systems to improve the damping, for the identification of oscillatory
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stability margin and damping margin in security assessment.

Invariant subspace-based method 

for dynamic systems

(Stiff system decomposition)

Recursive projection 

method

Critical eigenvalue 
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domain simulation

Steady state solution Bifurcation analysis

Small-signal stability 
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Eigenvalue analysis
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Figure 1.5 Invariant Subspace-Based Methods for Power System Compu-
tation and Analysis.

The summary of the invariant subspace-based methods for power system computation and

analysis is shown in Fig. 1.5. Since power system is a very stiff system, basically it is costly to

analyze the system directly. The invariant subspace-based methods are used to extract some

part of the system that we are interested in and analyze specifically, or to decompose the system

into two parts (the stiff and non-stiff parts) and treat them separately with different methods.

As a result, we can either speed up the computation or get more information which cannot

be achieved by the conventional methods. For example, the recursive projection method can

be used for both the equilibrium point calculation and the decoupled time-domain simulation.

The eigenvalues information of the stiff part achieved from RPM can also provide us the system

stability change information for bifurcation analysis. Reference [73] applies RPM to extract

the system steady state and small-signal stability information. The CIS method has been used

in [38] to trace the trajectory of the critical eigenvalues as system parameter varies. It can

also be used to identify various interacting dynamic phenomena related to eigenvalues. The

successive sensitivities extracted from ICIS are proposed to identify the oscillatory stability



www.manaraa.com

19

margin and the damping margin.

1.4 Organization

The thesis is divided into eight chapters and two appendices. The organization is as fol-

lows: Chapter 2 gives the mathematical model for power system stability analysis. Chapter

3 summaries the basic theorem and existing methods for eigenvalue and eigenvalue sensitivity

calculation. Chapter 4 describes the improved continuation of invariant subspaces algorithm

which is the basis of the thesis. Chapter 5 applies the ICIS method for critical eigenvalue

tracing, oscillatory stability margin boundary estimation, and identification of various inter-

acting power system dynamic phenomena, such as low-frequency oscillation, subsynchronous

resonance, etc. Chapter 6 proposes an efficient identification of oscillatory stability margin and

damping margin based on the successive eigenvalue sensitivity extracted during ICIS. Chap-

ter 7 proposes a modified invariant subspace algorithm that can trace the equilibrium point

and critical eigenvalues simultaneously. Chapter 8 gives the contributions of the research and

discusses the future work.
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CHAPTER 2. POWER SYSTEM DAE MODEL

2.1 Introduction

This chapter gives an overview of the mathematical models for a variety of power system

components. The representation consists of both static and dynamic models. Based on detailed

representation for each element, a generic mathematical formulation is presented for power

system dynamic analysis.

2.2 Synchronous Generator Model

The studied power system is assumed to have n buses and m generators. Without loss

of generality, the mth generator’s rotor angle is chosen as the system angle reference. The

two-axis generator model describing the synchronous machine dynamics is given as [64, 75]:

δ̇i = (ωi − ωm)ω0 i = 1, 2, . . . ,m− 1 (2.1)

ω̇i = [Pmi−Di(ωi−ωm)−(E′
qi−X ′

diIdi)Iqi−(E′
di+X

′
qiIqi)Idi]/Mi i = 1, 2, . . . ,m (2.2)

Ė′
qi = [Efdi − E′

qi − (Xdi −X ′
di)Idi]/T ′d0i i = 1, 2, . . . ,m (2.3)

Ė′
di = [−E′

di + (Xqi −X ′
qi)Iqi]/T ′q0i i = 1, 2, . . . ,m (2.4)

where δi is the ith generator angle, ωm is the system speed, ωi is the machine speed, namely,

generator angular speed, ω0 is the system rated speed (377.0 rad/s for 60 Hz rated frequency);

Idi and Iqi are direct axis (d-axis) and quadrature axis (q-axis) currents, respectively; E′
di and

E′
qi are transient d-axis and q-axis EMFs (Electric and Magnetic Fields), respectively; Xdi and

Xqi represent d-axis and q-axis synchronous reactances; X ′
di and X ′

qi represent d-axis and q-axis

transient reactances; T ′d0i and T ′q0i are d-axis and q-axis open circuit transient time constants;
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Mi is the machine inertia constant and Di is the machine damping constant. Note that all the

other quantities are in per unit except ω0.

The ith machine currents Idi and Iqi can be eliminated by solving the generator interface

equations to the network. Therefore, we have

Idi = [Rsi[E′
di − Visin(δi − θi)] +X ′

qi[E
′
qi − Vicos(δi − θi)]]/Ai

Iqi = [Rsi[E′
qi − Vicos(δi − θi)]−X ′

di[E
′
di + Visin(δi − θi)]]/Ai

Ai = R2
si +X ′

diX
′
qi. (2.5)

2.3 Excitation System Model

The simplified IEEE type DC-1 excitation system as shown in Fig. 2.1 is used to represent

the excitation system. The corresponding mathematical model is as follows:

Ėfdi = [Vri − [Kei + Sei(Efdi)]Efdi]/Tei i = 1, 2, . . . ,m (2.6)

V̇ri = [−Vri +Kai(Vrefi − Vi −Rfi)]/Tai i = 1, 2, . . . ,m (2.7)

if Vri,min ≤ Vri ≤ Vri,max, Vpssi = 0 (at steady state)

Ṙfi = [−Rfi − [Kei + Sei(Efdi)]KfiEfdi/Tei +KfiVri/Tei]/Tfi i = 1, 2, . . . ,m (2.8)

where Vrefi is the reference voltage of AVR; Vri and Rfi are the outputs of the AVR and exciter

soft feedback; Efdi is the voltage applied to generator field winding; Tai, Tei, and Tfi are AVR,

exciter, and feedback time constants; Kai, Kei, and Kfi are the gains of AVR, exciter, and

feedback, respectively; Vri,min and Vri,max are the lower and upper limits of Vri.

2.4 Prime Mover and Speed Governor Model

Fig. 2.2 shows the block diagram of a simplified prime mover and speed governor. Two

differential equations are used to describe the dynamics when no µi limit is hit.

Ṗmi = (µi − Pmi)/Tchi i = 1, 2, . . . ,m (2.9)
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Figure 2.1 The IEEE Type DC-1 Excitation System.
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Figure 2.2 The Simplified Speed Governor and Prime Mover.

µ̇i = [Pgsi − (ωi − ωref )/Ri − µi]/Tgi i = 1, 2, . . . ,m (2.10)

if µi,min ≤ µi ≤ µi,max

where Pgsi = P 0
gsi(1+Kgip) is the designated real power generation, P 0

gsi is its setting at the base

case; Kgi is the generator load pickup factor that can be determined by automatic generation

control (AGC), economic dispatch control (EDC) or other system operating practices; Pmi

is the mechanical power of prime mover and µi is the steam valve or water gate opening;

µi,min and µi,max are the lower and upper limits of µi; Ri is the governor regulation constant

representing its inherent speed-droop characteristic; ωref (= 1.0) is the governor reference

speed; Tchi and Tgi are the time constants related to the prime mover and speed governor,

respectively. Parameter p is introduced to designate the system operating condition. At the

base case, p is equal to zero.
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2.5 Nonlinear Load Model

Load model may be voltage and frequency dependent. In power system analysis, common

load models can be constant power model, constant current model, and constant impedance

model. The representation for these static load models is shown as follows.

• Constant power load:

Pli = Pli0 Qli = Qli0. (2.11)

• Constant current load:

Pli = Pli0(Vi/Vi0) Qli = Qli0(Vi/Vi0). (2.12)

• Constant impedance load:

Pli = Pli0(Vi/Vi0)2 Qli = Qli0(Vi/Vi0)2. (2.13)

The generic load model which has been widely used to represent the voltage dependency

of loads is the polynomial model: Pli = Pli0[Kp1 +Kp2(Vi/Vi0) +Kp3(Vi/Vi0)2]

Qli = Qli0[Kq1 +Kq2(Vi/Vi0) +Kq3(Vi/Vi0)2].
(2.14)

This model is called the ZIP model, as it is composed of constant impedance (Z), constant

current (I), and constant power (P ) components. The parameters Kp1, Kp2, Kp3 define the

proportion of constant power, constant current, and constant impedance load for real power;

the parameters Kq1, Kq2, Kq3 define the proportion of constant power, constant current, and

constant impedance load for reactive power.

The generic load model may also have frequency dependent component. The frequency

dependency of load characteristics is usually represented by multiplying the exponential model

of the polynomial model by a factor as follows: Pli = Pli0[Kp1 +Kp2(Vi/Vi0) +Kp3(Vi/Vi0)2][1 +Kpf (ωm − 1)]

Qli = Qli0[Kq1 +Kq2(Vi/Vi0) +Kq3(Vi/Vi0)2][1 +Kqf (ωm − 1)]
i = 1, 2, . . . , n

(2.15)
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where Pli and Qli are the real and reactive power of the load at bus i; Pli0 and Qli0 are the

real and reactive power consumed by the load at the nominal voltage Vi0; parameters Kpf and

Kqf are the load changing factors with respect to system frequency.

2.6 Network Power Equations

Network power equations represent the power flow model for power system network. The

simplified form of the power flow equations is as follows.

g(x, y) = 0 (2.16)

where algebraic variables y represent the solution of power flow; the algebraic equations g

represent network equations. At each bus of the power system, power injection is balanced.

The process of solving the algebraic equations (2.16) for given loads and generator power

outputs is referred to as the load flow or power flow calculation. It requires an iterative

procedure. There are several alternative iteration methods, all of which produce a solution in

the form of a stated magnitude and phase angle of the power frequency voltage phasor for each

bus.

The network equations g can be divided into the nonlinear forms consisting of real and

reactive power balance. 0 = Pgi − (1 +Klpip)Pli − Pti

0 = Qgi − (1 +Klqip)Qli −Qti

i = 1, 2, . . . , n (2.17)

where Pgi and Qgi are the real and reactive power generation of the generator at bus i; Pti and

Qti are the net real and reactive power injection at bus i; Klpi and Klqi are the load changing

factors specified for bus i.

The real and reactive power generations are primarily determined by the inherent charac-

teristics of the speed governor and AVR regulations. They will change if real power generation

rescheduling and secondary voltage control are activated. They are described as follows. Pgi = IdiVisin(δi − θi) + IqiVicos(δi − θi)

Qgi = IdiVicos(δi − θi)− IqiVisin(δi − θi)
i = 1, 2, . . . , n (2.18)
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The real and reactive loads are determined by the load characteristics. The net real and

reactive power injection are constrained by the physical characteristics, which are represented

by the following equations.
Pti =

n∑
k=1

ViVkYikcos(θi − θk − ϕik)

Qti =
n∑

k=1

ViVkYiksin(θi − θk − ϕik)
i = 1, 2, . . . , n. (2.19)

The variables Vi and θi in (2.18) and (2.19) are bus voltage magnitude and angle respec-

tively. These variables belong to the unknown variables y in (2.16) in power flow calculation.

The variables Yik and ϕik are given parameters from power system model representing bus

connections.

2.7 Power System DAE Model

Corresponding to the above models, there are both differential equations and algebraic

equations in power systems. As a result, power systems can be represented generally by a

DAE model. The mathematical formulation is as follows. ẋ = f(x, y, p)

0 = g(x, y, p)
(2.20)

where x ∈ Rn and y ∈ Rm are state and algebraic variable vectors of dimensions n and m,

respectively. The dynamics of the generators, motors, control devices, and generally the load

dynamics together define the dynamic equations f : Rn ×Rm ×R −→ Rn, while the algebraic

equations g : Rn×Rm×R −→ Rm typically consist of the power flow equations of the network.

p ∈ R is the parameter to represent the load level of the entire or part of the system. It should

be pointed out that the system parameter is very flexible to be chosen. Any arbitrary system

operating parameter (e.g., nodal injection, controller gain) or power network parameter (line

impedance, transformer tap, etc) can also be chosen as the system parameter. When applying

the continuation method, this parameter p is the continuation parameter to be used during

the tracing process through the thesis.
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CHAPTER 3. POWER SYSTEM SMALL-SIGNAL STABILITY

ANALYSIS

3.1 Introduction

This chapter introduces the basic theorem and existing conventional methods for eigenvalue

and eigenvalue sensitivity calculations in power systems. It also describes some eigenvalue-

related concepts together with their applications in power system analysis.

3.2 Eigenvalue and Eigenvalue Sensitivity

For a fixed value of system parameter p, the equilibrium points (x∗, y∗) of the DAE model

of power system (2.20) are solutions of the system: f(x, y, p) = 0

g(x, y, p) = 0.
(3.1)

To a large extent, the current research and industry tools for stability analysis and design

of power system controllers consist of applying the technique of linearization. Assume that

matrices f and g are both continuous and differentiable, the stability of equilibrium points can

be determined by linearizing (2.20) around the equilibrium (x∗, y∗). ∆ẋ

0

 = A(p)

 ∆x

∆y

 (3.2)

where A(p) ∈ R(m+n)×(m+n) is called the Jacobian matrix of the power system DAE model:

A(p) =

 fx(p) fy(p)

gx(p) gy(p)

 . (3.3)
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In power system small-signal stability analysis, there are generally two techniques to cal-

culate the Jacobian matrix once the steady state solutions are obtained at a certain system

operating point: state perturbation and symbolic computation. In the state perturbation

method, each state is perturbed in turn by a very small value (e.g., 10−4). When the ith

state is perturbed, the ith column of the Jacobian will be calculated. The Jacobian can be

formulated once all the state and algebraic variables have been perturbed. The advantage of

this method is that it is easy to implement. The disadvantage is that sometimes the results

might not be accurate since it is only an approximation method. The symbolic computation

derives the derivatives of each DAE with respect to x and y in order to calculate fx, fy, gx,

and gy, respectively. We need to have explicit knowledge of system equations to perform the

symbolic derivative calculation. In the thesis, the Jacobian is calculated using the symbolic

computation with the help of MATLAB symbolic computing functions.

The Jacobian matrix A(p) is a sparse matrix. For the New England 39-bus system at a

certain steady state condition, Fig. 3.1 shows the sparsity pattern of the Jacobian. The non-

zero elements are shown in black. Assume gy is nonsingular, we can eliminate the vector of

algebraic variables ∆y in (3.2):

∆ẋ = [fx − fyg
−1
y gx]∆x = As∆x. (3.4)

The equivalent system state matrix is

As(p) = fx(p)− fy(p)g−1
y (p)gx(p) (3.5)

whose eigenvalues determine the small-signal stability of the system. It is the Schur comple-

ment of the algebraic equation Jacobian gy in the unreduced Jacobian A(p). For this reason,

As(p) is often called the reduced Jacobian. Fig. 3.2 shows the sparsity pattern of the reduced

Jacobian As(p) in the New England system. Since the state matrix As is not sparse anymore,

it is now generally accepted that it is better to work directly with (3.3) instead of (3.5) in com-

puting eigenvalues and eigenvectors, especially for large power systems [53, 76]. In addition to

this, the advantages of using structure-preserving form (3.3) in power system analysis include

[77]: numerical efficient eigenvalue computation methods; it facilitates analytical study of how
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parameters in the algebraic equations affect the system eigenvalues; the eigenvalue sensitivity

problem can be decomposed into network-dependent and device-dependent parts which provide

more physical insight.

It should also be mentioned that the system sparsity pattern changes as system size varies.

Table 3.1 shows the sparsity of Jacobian for different power system DAE models. One can see

that with the increase in system size and order of the Jacobian, the ratio between the number

of non-zero elements and the total number of elements in the Jacobian decreases, which reflects

that the system model becomes more sparse.

Table 3.1 Sparsity of Jacobian for Different System Models

No. Order Total Number of Elements (TN) Non-Zero Elements (NZ) NZ/TN
1 167 27,889 1,298 4.65E-2
2 653 426,409 5,150 1.21E-2
3 1,138 1,295,044 4,054 3.13E-3
4 7,135 50,908,225 34,738 6.82E-4
5 13,251 175,589,001 48,737 2.78E-4
6 21,476 461,218,576 76,512 1.66E-4

Assume gy is nonsingular, for each eigenvalue λi and the corresponding n-element right

eigenvector φi of As, define ϕi = −g−1
y gxφi, then we can work directly on (3.6) to calculate λi

and φi instead of solving (3.7) [76]: fx fy

gx gy


 φi

ϕi

 =

 λiφi

0

 (3.6)

Asφi = λiφi. (3.7)

Similarly, for each eigenvalue λi and the corresponding n-element left eigenvector ψi of As,

define χT
i = −ψT

i fyg
−1
y , we can work directly on (3.8) instead of (3.9) to calculate λi and ψi:[

ψT
i χT

i

] fx fy

gx gy

 =
[
λiψ

T
i 0

]
(3.8)

ψT
i As = ψT

i λi. (3.9)

Eigenvalue sensitivity analysis involves the study of changes in the dynamic characteristic

of a system with respect to parameter variations. The conventional way to calculate eigenvalue
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sensitivity uses the reduced Jacobian As. The eigenvalues depend continuously on parameter p.

If the ith eigenvalue λi is distinct, then it is even differentiable and we also have ψT
i φi 6= 0. In

this case, one can carry through a first-order perturbation analysis. Take the partial derivative

of both sides of (3.7) with respect to p:

∂As

∂p
φi +As

∂φi

∂p
=
∂λi

∂p
φi + λi

∂φi

∂p
. (3.10)

Left multiplying both sides of (3.10) by ψT
i , and considering (3.9), the first-order sensitivity

of eigenvalue λi with respect to parameter p can be written as [50, 52]

∂λi

∂p
=
ψT

i
∂As
∂p φi

ψT
i φi

. (3.11)

Meanwhile, differentiate (3.5) with respect to p, we can get

∂As

∂p
=
∂fx

∂p
− ∂fy

∂p
g−1
y gx − fy

∂g−1
y

∂p
gx − fyg

−1
y

∂gx

∂p
. (3.12)

Proposition 1. ∂g−1
y

∂p = −g−1
y

∂gy

∂p g
−1
y .

Proof. From I = gyg
−1
y , differentiate both sides with respect to p and use the product rule:

0 =
∂(gyg

−1
y )

∂p
=
∂gy

∂p
g−1
y + gy

∂g−1
y

∂p
. (3.13)

Then we will have
∂g−1

y

∂p
= −g−1

y

∂gy

∂p
g−1
y . (3.14)

Finally we can get

Ȧs =
∂As

∂p
= ḟx − ḟyg

−1
y gx + fyg

−1
y ġyg

−1
y gx − fyg

−1
y ġx. (3.15)

Similar to the calculation of the Jacobian matrix, the derivative of the Jacobian can also

be derived by the symbolic computing to simplify the calculation.

Since the left and right eigenvectors corresponding to different eigenvalues are orthogonal,

assume all eigenvalues are distinct, consider two eigenvalues λi and λj , if we normalize the

eigenvectors so that

ψT
i φj =

 1, i = j

0, i 6= j.
(3.16)
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Then the eigenvalue sensitivity in (3.11) can further be simplified as

λ̇i =
∂λi

∂p
= ψT

i Ȧsφi. (3.17)

Reference [53] proposed an eigenvalue sensitivity formula which works directly with A

instead of As. First, a generalized eigenvalue problem is presented:

Aφ̂i = λiEφ̂i (3.18)

where,

E =

 In 0

0 0

 (3.19)

φ̂i =

 φi

ϕi

 . (3.20)

It is equivalent to (3.6) and (3.7) to calculate the eigenvalue λi and its right eigenvector φi.

Similarly, for the calculation of eigenvalue λi and the corresponding left eigenvector, we

have the following formulation

ψ̂T
i A = λiψ̂

T
i E (3.21)

where,

ψ̂i =

 ψi

χi

 . (3.22)

It is equivalent to (3.8) and (3.9) to calculate the eigenvalue and left eigenvector.

From (3.18), the eigenvalue sensitivity can be derived as follows [53]:

∂λi

∂p
=
ψ̂T

i
∂A
∂p φ̂i − λiψ̂

T
i

∂E
∂p φ̂i

ψ̂T
i Eφ̂i

. (3.23)

Matrix E is a constant matrix as shown in (3.19), so ∂E/∂p = 0, if E has no relationship

with p. Furthermore, if the eigenvectors ψi and φi are normalized and satisfy (3.16), we will

have the following standard normalization of finite eigenvectors

ψ̂T
i Eφ̂i = 1. (3.24)
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Finally, the structure-preserving formulation of eigenvalue sensitivity in (3.23) has the form

λ̇i = ψ̂T
i Ȧφ̂i. (3.25)

Eqs. (3.17) and (3.25) give the conventional ways to calculate the eigenvalue sensitivity at

any given steady state operating condition for differential (standard) and differential-algebraic

(generalized) models, respectively. For eigenvalue computation using QR method, it takes

O(m(m2+mn+n2)) to formulate the state matrix As and 25O(n3) to calculate the eigenvalues,

where “O” means floating-point operations per second (FLOPS). For solving the generalized

eigenvalue problem (3.18) with QZ algorithm [40], it takes 30O((m + n)3) to calculate the

eigenvalues, 16O((m+n)3) and 20O((m+n)3) to calculateQ and Z, respectively. For eigenvalue

sensitivity calculation, it needs both the left and the right eigenvectors and costs more time to

compute. It can be seen that the computation of eigenvalue and eigenvalue sensitivity using the

conventional methods is not efficient. For large power system, with the increase in system size,

it will result in excessive computation cost. The improved continuation of invariant subspaces

provides us an effective, efficient, and robust way not only for eigenvalue computation but also

for the calculation of eigenvalue sensitivity as shown in the next chapter.

3.3 Eigenvalue and Damping Ratio

A real eigenvalue corresponds to a non-oscillatory mode. A positive real eigenvalue repre-

sents an aperiodic growing mode, and a negative real eigenvalue represents a decaying mode.

On the other hand, complex eigenvalues occur in conjugate pairs and each pair corresponds to

an oscillatory mode. A pair of complex eigenvalues λi = σi± jωi include a real part σi and an

imaginary part ωi. The imaginary part ωi = 2πfi gives the frequency fi of the corresponding

oscillatory mode. The real part σi reveals the damping of the associated oscillatory mode: a

positive value means a negative damping with a growing oscillatory response, while a negative

value represents a positive damping with a decreasing oscillatory response. A real part with

zero value implies there is no damping with the mode. If all the eigenvalues of the system

state Jacobian As have negative real parts, the equilibrium (x∗, y∗) is asymptotically stable for
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“sufficiently small” initial perturbations from the equilibrium point. If at least one eigenvalue

of the linearized system state matrix has a positive real part, the equilibrium is unstable.

Damping plays an important role in power system oscillations. In the oscillatory stability

assessment, an important criterion is to keep the system far away from a certain minimum

damping ratio limit for each scenario or contingency. Usually, the small-signal stability problem

is one of ensuring sufficient damping of system oscillations. The damping ratio corresponding

to a complex pair of eigenvalues λi = σi ± jωi is given by

ζi = ζ(λi) = − σi√
σ2

i + ω2
i

. (3.26)

The damping ratio ζi determines the rate of decay of the amplitude of oscillation. The time

constant of amplitude decay is 1/|σi|. In other words, the amplitude decays to 1/e or 36.8%

of the initial amplitude in 1/ |σi| seconds or in 1/(2πζi) cycles of oscillation. For example, a

damping ratio of 5% means that in three cycles of oscillation periods, the amplitude is damped

to about 34.7% of its initial value.

3.4 Participation Factor and Modal Analysis

The right eigenvector associated with an eigenvalue may not always give a reliable measure

of the activity of a variable in a mode as it depends on the physical units of the corresponding

variable. In other words, the right eigenvectors account for mode shape, but they are unit

dependent. Their scaling depends on the dimensions of the state variables and also the case

for the left eigenvectors. This makes it difficult to compare the relative importance of different

types of states. Consequently, the concept of participation factor was introduced successfully

in [21] to overcome these difficulties as a means of expressing the coupling between modes and

state variables.

Given that the eigenvectors product ψT
i φi is normalized to unity as in (3.16), participation

factor is the product of the jth components of the left and right eigenvectors corresponding

to the ith mode

pij = ψ∗ijφij (3.27)
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where φij is the ith element of the jth right eigenvector, ψ∗ij is the complex conjugate of the ith

element of the jth left eigenvector. φij measures the activity of the ith state variable xi in the

jth mode, and ψij weighs the contribution of this activity to the jth mode. Thus the factor

pij gives a measure of the relative participation of the ith state variable in the jth mode, and

vice versa. It should be mentioned that as pointed out in [78], this factor is also the partial

derivative of the jth eigenvalue with respect to the ith diagonal element of the state matrix.

Originally proposed in [21], a matrix called the participation matrix denoted by P , provides

a measure of association between the state variables and the oscillatory modes. It is defined

as

P = [ P1 P2 · · · Pn ] (3.28)

with the participation vector Pi determined by

Pi =



p1i

p2i

...

pni


=



ψ∗1iφ1i

ψ∗2iφ2i

...

ψ∗niφni


i = 1, 2, . . . , n. (3.29)

It should be mentioned that in power system controller design, the right eigenvector gives

information about the observability of oscillation mode, the left eigenvector gives information

about the controllability. Hence, the combination of the right and left eigenvectors (residues)

indicates the location of the controllers to be installed.
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CHAPTER 4. AN IMPROVED CONTINUATION OF INVARIANT

SUBSPACES WITH SENSITIVITY

4.1 Introduction

This chapter describes the improved continuation of invariant subspaces algorithm in de-

tail. With proper initialization, the successive eigenvalue sensitivity extracted during ICIS is

proposed and proved mathematically. The initialization and update of invariant subspaces are

also described.

4.2 Improved Continuation of Invariant Subspaces With Sensitivity

4.2.1 Improved Continuation of Invariant Subspaces

Low-dimensional invariant subspaces of parameterized large matrix A(p) (or As(p)) play an

important role in the numerical analysis of dynamical systems. Invariants subspaces that be-

long to part of the spectrum which is close to the imaginary axis provide the information about

stability, bifurcation, and more generally, about locally invariant manifolds [36]. However, for

traditional eigenvalue computation methods, these eigenvalues are usually obtained from a full

resolution of the spectrum. For big and sparse power system state matrix, it will be important

to apply the continuation of invariant subspaces to this problem for saving computation time

as well as improving efficiency.

We consider a family of matrices As(p) depending smoothly on parameter p. Our aim is to

compute smooth matrices Φ(p) ∈ Rn×r, the columns of which form a basis of an r-dimensional

subspace S(Φ(p)) invariant under As(p) [36], i.e.

As(p)Φ(p) = Φ(p)Λ(p) (4.1)
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for some Λ(p) ∈ Rr×r which has exactly the eigenvalues of As(p) that correspond to the

eigenvectors spanning Φ(p). If the eigenvalues of As are distinct, then As can be diagonalized.

Specially, when Λ(p) is a diagonal matrix with the r eigenvalues on its diagonals, there is

Λ(p) = diag(λ1, λ2, . . . , λr) =



λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λr


(4.2)

and

Φ0 =
[
φ1 φ2 · · · φr

]
. (4.3)

It is easily seen that (4.1) represents nr equations for (nr + r2) unknowns. Therefore, r2

extra conditions have to be added. A natural choice would be to require Φ(p)T Φ(p) = Ir,

where Ir denotes the r × r identity matrix. In other words, Φ(p) would span an orthonormal

basis. However, the usual normalization condition n(Φ) = Φ(p)T Φ(p)− Ir is not differentiable,

except at Φ = 0. Hence, it is generally preferred to consider a “linearized” constraint [36]:

Φ̂T Φ(p) = Ir (4.4)

with a fixed Φ̂ ∈ Rn×r.

Note for power systems with DAE models, the system state matrix A as defined in (3.3)

will be used directly to maintain the system sparsity. Then the extended eigenvector matrix

can be defined as Ω = −g−1
y gxΦ, and the equation set for the invariant subspace becomes [38]

T (Φ,Ω,Λ, p) =


fx(p)Φ(p) + fy(p)Ω(p)− Φ(p)Λ(p)

gx(p)Φ(p) + gy(p)Ω(p)

Φ̂T Φ(p)− Ir

 = 0. (4.5)

In (4.5), there are totally (m + n + r)r equations and the same number of unknowns for

(Φ,Ω,Λ). The equation set can be solved by the continuation method along the parameter

path. The predictor-corrector techniques are applied to (4.5).

Assume that Φ0 = Φ(p0), Ω0 = Ω(p0), and Λ0 = Λ(p0) are the solutions of (4.5) at

p = p0, and the tangent to (Φ(p),Ω(p),Λ(p)) at p0 is (H0, L0,∆0) = (Φ̇(p0), Ω̇(p0), Λ̇(p0)). By
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differentiating (4.5), the following linear system of dimension (m+n+ r)r can be obtained for

the predictor:
fx(p0)H0 −H0Λ0 + fy(p0)L0 − Φ0∆0

gx(p0)H0 + gy(p0)L0

Φ̂TH0

 =


−ḟx(p0)Φ0 − ḟy(p0)Ω0

−ġx(p0)Φ0 − ġy(p0)Ω0

0

 . (4.6)

Equation (4.6) is called the bordered matrix equation of Sylvester type (or Riccati equation)

[36]. An effective method called the bordered Bartels-Stewart algorithm [40] is available for

solving this matrix equation. The algorithm computes Schur decomposition of matrix Λ and

reduces the linear algebra to solve a sequence of r bordered linear systems. The computation

cost of using the algorithm to calculate the bordered matrix equation (4.6) is O(r(m+n)(m+

n+ r)). The detailed implementation of the algorithm is described in the next section.

Once the tangent (H0, L0,∆0) has been found by solving (4.6), the prediction can be made

as 

Φ1

Ω1

Λ1

p1


=



Φ0

Ω0

Λ0

p0


+ s



H0

L0

∆0

1


(4.7)

where s is an appropriate step size.

For Λ(p) as shown in (4.2), Λ0 in (4.6) is a diagonal matrix. But since the derivative ∆0 is

not a diagonal matrix after solving the predictor (4.6), Λ1 in (4.7) is also not diagonal.

Suppose ∆0 is given as

∆0 = Λ̇(p) =



δ11 δ12 · · · δ1r

δ21 δ22 · · · δ2r

...
...

. . .
...

δr1 δr2 · · · δrr


. (4.8)

Proposition 2. When Λ(p) is a diagonal matrix as defined in (4.2), the diagonal elements

of its derivative ∆0 in (4.8) (δ11, δ22, . . . , δrr) give the eigenvalue sensitivities of the traced
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eigenvalues (λ1, λ2, . . . , λr) with respect to parameter p. In other words, ∀ i ∈ [1, r], we have

δii =
∂λi

∂p
= ψT

i Ȧsφi. (4.9)

Proof. For Ω0 = −g−1
y gxΦ0, differentiate both sides with respect to p, then

L0 = Ω̇0 = g−1
y ġyg

−1
y gxΦ0 − g−1

y ġxΦ0 − g−1
y gxH0. (4.10)

Left multiply the first equation in (4.6) by ψT
i , we get

ψT
i fxH0 − ψT

i H0Λ0 + ψT
i fyL0 − ψT

i Φ0∆0 = −ψT
i ḟxΦ0 + ψT

i ḟyg
−1
y gxΦ0. (4.11)

Substitute (4.10) into (4.11),

ψT
i (fx−fyg

−1
y gx)H0−ψT

i H0Λ0−ψT
i Φ0∆0 = −ψT

i (ḟx− ḟyg
−1
y gx +fyg

−1
y ġyg

−1
y gx−fyg

−1
y ġx)Φ0.

(4.12)

Consider (3.5) and (3.15), then

ψT
i AsH0 − ψT

i H0Λ0 − ψT
i Φ0∆0 = −ψT

i ȦsΦ0. (4.13)

Suppose H0 = [ h1 h2 · · · hr ], introduce (4.2) and (4.8) into (4.13), then

λiψ
T
i

[
h1 h2 · · · hr

]
− ψT

i

[
h1 h2 · · · hr

]


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λr



−ψT
i

[
φ1 φ2 · · · φr

]


δ11 δ12 · · · δ1r

δ21 δ22 · · · δ2r

...
...

. . .
...

δr1 δr2 · · · δrr


= −ψT

i Ȧs

[
φ1 φ2 · · · φr

]
. (4.14)

For the ith equation in (4.14), consider (3.16), there is

λiψ
T
i hi − ψT

i

[
h1 h2 · · · hr

] [
0 · · · 0 λi 0 · · · 0

]T

−ψT
i

[
φ1 φ2 · · · φr

] [
δ1i δ2i · · · δri

]T

= −ψT
i Ȧsφi (4.15)
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λiψ
T
i hi − ψT

i hiλi − δii = −ψT
i Ȧsφi. (4.16)

Finally

δii = ψT
i Ȧsφi. (4.17)

The real part of δii is the sensitivity of the real part of λi with respect to p, and the imaginary

part of δii gives the sensitivity of the imaginary part of λi. These eigenvalue sensitivities are

very useful for the selection of critical eigenvalue and step size control in the predictor iteration.

They indicate the direction for driving the critical eigenvalue to the imaginary axis. Eigenvalue

sensitivity information is also very useful in power system control, parameter estimation, and

model reduction, etc. The efficient identification of oscillatory stability margin and damping

margin can be achieved using the eigenvalue sensitivities during ICIS and will be described

later.

Proposition 3. Although H0 = Φ̇0, the columns of H0 in (4.7) do not provide the eigenvector

sensitivities information. In other words, assume H0 = [ h1 h2 · · · hr ], ∀ i ∈ [1, r], there

is

hi 6=
∂φi

∂p
. (4.18)

Proof. Similarly, for the jth equation in (4.14), we have

λiψ
T
i hj − ψT

i hjλj − ψT
i φiδij = −ψT

i Ȧsφj (4.19)

δij =
(λi − λj)ψT

i hj + ψT
i Ȧsφj

ψT
i φi

. (4.20)

It can be seen that although Λ0 is a diagonal matrix, its derivative ∆0 is not diagonal

anymore. Thus,

δ1iφ1 + δ2iφ2 + · · ·+ δriφr 6= δiiφi =
∂λi

∂p
φi. (4.21)

Since Ω0 = −g−1
y gxΦ0, then

L0 = Ω̇0

= −ġ−1
y gxΦ0 − g−1

y ġxΦ0 − g−1
y gxΦ̇0

= g−1
y ġyg

−1
y gxΦ0 − g−1

y ġxΦ0 − g−1
y gxH0. (4.22)
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Substitute (4.22) into the first equation in (4.6), at the same time consider (3.5) and (3.15),

we can get

AsH0 −H0Λ0 − Φ0∆0 = −ȦsΦ0 (4.23)

Applying (4.21) to the ith equation in (4.23), we get

Ashi − λihi −
∂λi

∂p
φi 6= −Ȧsφi (4.24)

(As − λiI)hi 6= −(
∂As

∂p
− ∂λi

∂p
)φi. (4.25)

This shows that hi 6= ∂φi/∂p. Otherwise, they are supposed to equal to each other by eigen-

vector sensitivity definition when we take the derivative with respect to p on both sides of

(3.7) [49, 79]. It means although H0 = Φ̇0, the columns of H0 do not give the eigenvector

sensitivities information because of non-diagonal form of matrix ∆0.

It should be mentioned that even when matrix Λ0 is a diagonal matrix, its derivative matrix

∆0 is not diagonal anymore. However, even if ∆0 is not diagonal, its diagonal elements still

provide the corresponding eigenvalue sensitivity information as long as Λ0 is a diagonal matrix.

The reason that matrix ∆0 is not diagonal is because matrix H0 which is the derivative of

right eigenvector matrix Φ0 does not provide the eigenvector sensitivity information as proved

above. Hence, to make the linear matrix equation in (4.6) hold true, ∆0 needs to be a non-

diagonal matrix. Further analysis shows that ∆0 will be a diagonal matrix if and only if H0

is an eigenvector sensitivity matrix. The proof can be given similar to the above description

considering the eigenvector sensitivity definition and is omitted.

Corrector steps are based on the standard Newton’s method applied to (4.5) with (Φ̂,Φ,Ω, p)

replaced by (Φ0,Φ1,Ω1, p1), i.e., the normalization condition is adapted. Starting at (Φ1,Ω1,Λ1),

Newton’s method generates a sequence of corrector iterations (Φk,Ωk,Λk), k ≥ 1, defined by
fx(p1)Φk+1 − Φk+1Λk + fy(p1)Ωk+1 − ΦkΛk+1

gx(p1)Φk+1 + gy(p1)Ωk+1

ΦT
0 Φk+1

 =


−ΦkΛk

0

Ir

 . (4.26)

The system is of the same type as (4.6) and again we use the same algorithm to solve it.
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Assume the corrector iterations (4.26) converge to solution (Φν+1,Ων+1,Λν+1) after ν New-

ton’s iterations (generally ν ≤ 5), the corrected eigenvalues can be obtained easily from the

eigenvalue decomposition on matrix Λν+1 in the corrector solution. We can use the conven-

tional methods, such as QR method, to compute the whole spectrum of Λν+1. Notice Λν+1 is

not diagonal, the eigenvalue decomposition yields Λν+1P = PΛ′, where Λ′ is a diagonal matrix

whose diagonal elements are the tracing eigenvalues after one continuation step. Since r is

very small compared with n, the decomposition cost is very cheap. At the next continuation

step, (Φ0,Ω0,Λ0) = (Φν+1P,Ων+1P,Λ′). This re-initialization guarantees the initial matrix Λ0

at any continuation iteration is always a diagonal matrix in the predictor if necessary. Thus,

∆0 always provides us eigenvalue sensitivity information. It should be mentioned that the

re-initialization is not always needed during the ICIS process. In any case, the eigenvalues of

Λ0 contain eigenvalues of As which correspond to the invariant subspaces spanning Φ(p).

For each iteration, the computational cost to calculate r eigenvalues of an (m+n)×(m+n)

matrix A(p) is O(r(m + n)(m + n + r)) [40]. It can be seen that the ICIS method has the

computational advantage in eigenvalue calculation over the conventional methods, especially

for large-scale power systems. Furthermore, as a by-product of the ICIS method, eigenvalue

sensitivity is a very useful tool for step size control to further decrease the number of iterations

to reach the stability margin boundary which will be described later.

4.2.2 The Bordered Bartels-Stewart Algorithm

The linear systems (4.6) and (4.26) are of the same formAH −HΛ−Ψ∆

Ψ̂TH

 =

B
C

 (4.27)

where H,B, Ψ̂ ∈ Rn×r, C,Λ,∆ ∈ Rr×r, and ρ(Λ) ⊂ ρ(A). It is called the bordered matrix

equation of Sylvester type for the unknowns (H,∆). The bordered Bartels-Stewart algorithm

[36, 37, 38] is very effective for solving this matrix equation and is described as follows. The

algorithm reduces the linear algebra to solve a sequence of bordered linear systems. First
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compute the complex Schur decomposition of the matrix Λ

QHΛQ = Λ̃, QHQ = Ir, Λ̃ upper triangular. (4.28)

Note that this only involves solving an eigenvalue problem of very small dimension for

r � n, it can be done very cheaply. Also even Λ in the predictor (4.6) is diagonal, it is not

diagonal in the corrector (4.26). By right-multiplying Q to both sides of (4.27), we transform

it into AH̃ − H̃Λ̃−Ψ∆̃

Ψ̂T H̃

 =

B̃
C̃

 (4.29)

where

H̃ = HQ, ∆̃ = ∆Q, B̃ = BQ, C̃ = CQ. (4.30)

Since Λ̃ is upper triangular, we can compute the columns H̃j , ∆̃j of H̃, ∆̃ similar to the

Bartels-Stewart algorithm from a sequence of bordered linear systems [40]

A− Λ̃jjIn −Ψ

Ψ̂T 0


H̃j

∆̃j

 =

B̃j +
j−1∑
k=1

Λ̃kjH̃k

C̃j

 j = 1, 2, . . . , r. (4.31)

After solving the linear systems in (4.31) sequentially for j = 1, 2, . . . , r, we can get H̃j and

∆̃j . Finally the solution (H,∆) can be obtained from (H̃, ∆̃) in (4.30).

4.3 Initialization and Update of Invariant Subspaces

To have the ICIS method started, we need to calculate a defined subset of eigenvalues and

their invariant subspace for a given initial parameter value. The main interest is the subspaces

that belong to spectral sets close to zero or to the imaginary axis, since the invariant subspace

corresponding to a few eigenvalues near the imaginary axis provides information about stability

and bifurcations. For the oscillatory stability, we are interested in the rightmost eigenvalues

which satisfy a certain real part criterion, since these eigenvalues are most likely to cross the

imaginary axis when the parameter changes.
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If we want to trace the rightmost eigenvalues, we need to guarantee that the invariant

subspace span contains all eigenvalues satisfying

Re(λi) > −γ (4.32)

for a given γ > 0. The idea is to detect the eigenvalues passing the imaginary axis in advance

for the purpose of stability analysis. This is because these eigenvalues are the candidates for

transition through the imaginary axis. More generally, we would like to choose Λ(p) in (4.2)

so that the gap between the real parts of the leftmost eigenvalue in Λ(p) and the rightmost

eigenvalue in the rest of the eigenvalue spectrum is greater than a certain threshold.

12 2)( 21  

)Re(

)Im(

)Re(

)Im(

IIIIIIIV
III III

0 1
IV

Figure 4.1 Generalized Cayley Transform for Calculation of Rightmost
Eigenvalues.

To find the eigenspace corresponding to the rightmost eigenvalues, we need to find a trans-

formation of As which maps eigenvalues with largest moduli to the rightmost eigenvalues. This

is because the conventional dominant eigenvalue computation methods can only converge to

the eigenvalues with largest moduli. The so-called generalized Cayley transform possesses such

a property [80, 81], as shown in Fig. 4.1. Let α1 > α2 be chosen so that (As − α1I) is regular.

In other words, α1 is not an eigenvalue of matrix As. The generalized Cayley transform C(As)
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is defined as

C(As) = (As − α1I)−1(As − α2I) = I + (α1 − α2)(As − α1I)−1. (4.33)

The following propositions are derived from [80] and have been reformulated here for better

illustration.

Proposition 4. This rational transform maps eigenvalues λ ∈ ρ(As) to θ ∈ ρ(C(As)) as

follows:

µ = C(λ) =
λ− α2

λ− α1
. (4.34)

Proof. For any λ ∈ ρ(As) with eigenvector φ, we have Asφ = λφ. So

(As − α1I)φ = (λ− α1)φ (4.35)

(As − α2I)φ = (λ− α2)φ. (4.36)

Multiply both sides of (4.35) and (4.36) by (λ−α2) and (λ−α1) respectively, then we can get

(λ− α2)(As − α1I)φ = (λ− α1)(λ− α2)φ (4.37)

(λ− α1)(As − α2I)φ = (λ− α1)(λ− α2)φ. (4.38)

Therefore, there is

(λ− α2)(As − α1I)φ = (λ− α1)(As − α2I)φ. (4.39)

From (4.39), consider (As − α1I) is regular, we have

(As − α1I)−1(As − α2I)φ =
λ− α2

λ− α1
φ. (4.40)

This means µ = (λ−α2)/(λ−α1) is the mapping eigenvalue of C(As) with eigenvector φ.

Proposition 5. Let θ = c(µ) where µ ∈ C. Then

Re(µ) ∈ [α1,∞) ⇐⇒ θ ∈ {z ∈ C : Re(z) > 1}

Re(µ) ∈
[
α1 + α2

2
, α1

)
⇐⇒ θ ∈ {{z ∈ C : Re(z) ≤ 1} −B(0, 1)}

Re(µ) ∈
[
α2,

α1 + α2
2

)
⇐⇒ θ ∈

{
B(0, 1)−B(

1
2
,
1
2
)
}

Re(µ) ∈ (−∞, α2) ⇐⇒ θ ∈ B(
1
2
,
1
2
)

(4.41)
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Proof. The results follow after straightforward calculation as illustrated in Fig. 4.1.

It can be seen that the half plane Re(λ) > (α1 + α2)/2 in the original spectral domain is

mapped outside the unit circle in the transformed spectral domain, and the farthest eigenvalue

of the matrix C(As) corresponds to the rightmost eigenvalue of As. It follows that well-

chosen parameters α1 and α2 enable us to detect the presence of eigenvalues satisfying the

condition (4.32). The advantages and shortcomings of the generalized Cayley transform have

been discussed in detail in [14]. The main advantage of the Cayley transform is that it only

needs to be applied one time to calculate all of the critical eigenvalues. The calculation is

performed in real arithmetic for real shift points α1 and α2 when As is real matrix. In addition,

for the initialization of rightmost eigenvalues using the Cayley transform, a suitable choice of

α1 and α2 should help in two ways. First, it should be able to help separate close rightmost

eigenvalues in the new spectral domain after the Cayley transform. Second, an appropriate

choice can maximize the convergence rate of the dominant eigenvalue computation. Reference

[80] explores more details on how to properly choose these parameters.

To trace the eigenvalues with the least damping ratio, we need to find the invariant subspace

contains the eigenvalues satisfying

ζ(λi) > ζc (4.42)

where ζc is a certain damping ratio threshold.

Reference [38] proposes a method which includes coordinate transform by rotating the

axes and the Cayley transform. The disadvantages of this method have two aspects. First,

the calculation needs to be performed in complex arithmetic for the Cayley transform after

rotating the real and imaginary axes, which increases the complexity of calculation. Second,

we cannot guarantee that all the eigenvalues satisfying the damping ratio requirement will be

included. The parameters α1 and α2 need to be carefully chosen so that the eigenvalues close

to the imaginary axis will not be neglected.

To overcome these shortcomings, the so-called “semi-complex” Cayley transform is pro-

posed to calculate those eigenvalues, as shown in Fig. 4.2. The advantage of this transforma-
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tion is that it can easily discriminate between complex conjugate pairs. Moreover, since α1

remains real, the matrix transformation (4.33) is still performed in real arithmetic.

1

2

0 1
)Re(

)Im(

)Re(

)Im(

A

BC

O

Figure 4.2 “Semi-complex” Cayley Transform for Calculation of Least
Damping Ratio Eigenvalues.

For certain damping ratio requirement, the damping angle is θ = cos−1ζ = tan−1(
√

1−ζ2

ζ ).

The parameters α1 and α2 can be chosen as follows.

Proposition 6. For a proper chosen parameter α1 > 0, parameter α2 can be determined by

the following formula:

α2 = α1(cos2θ − jsin2θ). (4.43)

Proof. The coordination of point A is A = α1, since the line OB is perpendicular to the line

AB, the coordination of point B is

B = α1cos2θ − jα1sinθcosθ. (4.44)

Since point B is the midpoint of line segment AC in Fig. 4.2. According to the midpoint

formula, there is

C = 2B −A

= 2α1cos2θ − j2α1sinθcosθ − α1

= α1(cos2θ − jsin2θ). (4.45)
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So we can get

α2 = α1(cos2θ − jsin2θ). (4.46)

Once the transformation is performed, the dominant eigenvalue computation methods can

be used to calculate the largest moduli eigenvalues and the corresponding eigenvectors, such as

the Arnoldi method [38], power method, subspace iteration, etc. Subspace iteration (sometimes

called simultaneous iteration or orthogonal iteration) is a well-known algorithm that computes

eigenspace corresponding to eigenvalues with the largest moduli [36], which is a generalization

of the power method for finding the dominant eigenspace of a matrix. It is especially suitable

for solving eigenvalue problem involving large, sparse nonsymmetric matrices [82], such as

power system eigenvalue computation. Reference [82] provides a Fortran program to calculate

the dominant invariant subspace to the eigenvalues of the largest moduli for a nonsymmetric

matrix by the method of subspace iteration. Let r be the number of eigenvalues we want to

calculate (r � n). Assume S = C(As) is a matrix of order n with eigenvalues (µ1, µ2, . . . , µn)

ordered so that

|µ1| ≥ · · · ≥ |µr| > |µr+1| ≥ · · · ≥ |µn|

i.e., there is a spectral gap between the two clusters. Consider the following subspace iterative

process:

do V (k+1) = C(As)V (k);

orthonormalize V (k+1);

k = k + 1;

until convergence.

The iterative process produces a sequence of matrices V (k) ∈ Rn×r which converge to the

eigenspace corresponding to (µ1, µ2, . . . , µr) provided that the initial matrix V (0) contains com-

ponents in this eigenspace. It is automatically satisfied in computer arithmetic due to round-off

errors. Therefore, we can initialize V (0) randomly. The orthonormalization is implemented via

the modified Gram-Schmidt process [40]. In addition, the method can be accelerated by the

application of acceleration techniques. For example, the Fortran program SRRIT [82] makes
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use of a “Schur-Rayleigh-Ritz step” to accelerate the iteration process. Some other subspace it-

eration methods, such as the Jacobi-Davidson method [31], is applied to compute the rightmost

eigenvalues without the need of Cayley transform.

To trace the movement of a number of specified oscillatory modes with parameter change,

the initialization is different since these eigenvalues are only associated with certain modes of

the system that we are interested in. In this case, first the conventional eigenvalue computation

methods (such as the QR method) will be used to calculate the eigenvalues at a starting

point. Then modal analysis will be performed to associate the eigenvalues with different

modes (elements of the system). The eigenvalues and eigenvector space corresponding to the

specified modes will then be extracted. Once the invariant subspace is obtained at the starting

point, the interaction between these oscillatory modes can be identified subsequently when the

ICIS method is used to trace them.

Since we cannot guarantee that all the eigenvalues satisfying the criterion will be captured

during the tracing process, the update of invariant subspace is needed when a new single

eigenvalue or a complex conjugate pair satisfying (4.32) or (4.42) occurs. Therefore, at regular

intervals of change in parameter value, a routine check will be performed to compute all

eigenvalues satisfying the criterion. Since some of them have been included in the invariant

subspace spanned by Φ(p) obtained from ICIS, reference [37] proposes to perform a projection

in each step of subspace iterations to compute only those eigenvalues satisfying (4.32) or (4.42)

which are not included in the tracing set. Similarly, reference [38] proposes the projected

Arnoldi method to avoid the recalculation of these eigenvalues.

4.4 Computational Cost Comparison

About the computational cost, the ICIS method has the advantage over the traditional

eigenvalue calculation methods since it only calculates a set of critical eigenvalues instead of

the whole eigenvalue spectrum. For the Sylvester equation AX +XB = C, where A,B, and

C are real matrices of dimensions m ×m,n × n, and m × n, respectively, to solve it by the

Bartels-Stewart algorithm, the number of multiplications required for the solution is estimated



www.manaraa.com

49

by [83]

(2 + 4ξ)(m3 + n3) + 5(mn2 +m2n)/2

where ξ is the average number of QR steps required to make a subdiagonal element negligible.

The first term is due to the reduction of A and B to real Schur form.

In general, the computational cost to calculate r eigenvalues of an n × n matrix A is

O(nr(n+ r)) [40]. As a comparison, it costs O(25n3) to calculate r eigenvalues using the QR

method. So it can be seen that the ICIS method has big computational advantage over the

traditional methods, especially for large-scale eigenvalue computation problem.

The detailed performance comparison between the ICIS method and the conventional meth-

ods will be described later in Chapter 6.

4.5 Conclusion

It is of great value to efficiently compute not only the mode related to the least damping

eigenvalue, but also the mode related to the eigenvalue that moves the fastest or most likely

to cross the imaginary axis. The ICIS method can provide us an efficient way to implement

it. The ICIS algorithm consists of a predictor based on the first derivative information, and a

corrector based on an iterative refinement technique for improving the accuracy of a computed

invariant subspace. The bordered Bartels-Stewart algorithm is applied to solve the matrix

equations in the predictor and the corrector. Generalized Cayley transform and subspace

iteration are employed to update the invariant subspace and guarantee that it contains all

the critical modes for rightmost eigenvalues trace. The “semi-complex” Cayley transform is

proposed to calculate the least damping ratio eigenvalues.

The ICIS method can trace the movement of a number of particular critical eigenvalues

with parameter change. On the other hand, the QR method can only calculate a bunch of

discrete eigenvalues for each parameter value. The eigenvalue sequences are not ordered in

the same way for different parameter values. Hence, it is difficult to link them together as

parameter varies. The QR method frequently changes the positions of eigenvalues, causing
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difficulties in tracing the same eigenvalue. The ICIS method does not have the difficulty to

trace any set of critical eigenvalues of interest.

The eigenvalue sensitivities can also be extracted during the ICIS process [67, 71, 72]. At

each iteration, we not only know the location of each traced eigenvalue, but also the direction

and speed of the eigenvalue movement. This information is very useful in ranking eigenvalues,

controller design, and many other purposes.
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CHAPTER 5. SYSTEMATIC IDENTIFICATION OF INTERACTING

POWER SYSTEM DYNAMIC PHENOMENA WITH THE PROPOSED

METHOD

5.1 Introduction

This chapter applies the improved continuation of invariant subspaces to trace the critical

eigenvalues of power system and extract the eigenvalue sensitivity information. Furthermore,

the stability margin boundary is predicted at each iteration by Newton’s method, it gives us

an index to measure the distance of the current operating point to the stability boundary. As a

result, only the critical eigenvalues that might affect the system stability change will be traced.

We can get the movement of those critical eigenvalues together with the eigenvalue sensitivities

effectively and accurately. The ICIS method will be used to deal with close eigenvalues and

eigenvalue collision. It will also be applied to identify various interacting dynamic phenomena,

such as low-frequency oscillation, subsynchronous resonance, etc. A heuristic procedure based

on the ICIS method is proposed to identify the potential modal resonance phenomenon. The

detailed simulation results based on the proposed ICIS algorithm in Chapter 4 are given as

follows.

5.2 Numerical Examples

5.2.1 New England System Description

The improved continuation of invariant subspaces is tested on the New England 39-bus

system. The schematic diagram of the system is shown in Appendix A. The system has 10

generators, 19 loads, and 46 transmission lines. Each generator consists of a two-axis generator
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model, an IEEE DC-1 excitation system, and a governor model. There are nine state variables

for each generator and two algebraic variables for each bus. With system angle reference

excluded, the total state and algebraic variables are 89 and 78, respectively. The total number

of eigenvalues at any given equilibrium operating point is 89. Load consists of 50% constant

power, 30% constant current, and 20% constant impedance. Load on all buses will increase

with the same percentage unless specified. The system load is chosen at the control parameter

p. All of the numerical results are performed in MATLAB environment.

Fig. 5.1 shows the distribution of eigenvalues of the New England system at 4300 MW load

level by MATLAB eigenvalue computation function “eig”. It can be seen that the system is

very stiff because it has both small eigenvalues (e.g., −100) and large eigenvalues (e.g., −0.02).

The system stiffness ratio is S = max|Re(λi)|/min|Re(λi)| ≈ 5000 which is very large. For

power system eigenvalues computation, the rightmost eigenvalues and eigenvalues with the

least damping ratio are most of interest, which are only a small part of the whole eigenvalue

spectrum.
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Figure 5.1 Distribution of Eigenvalues at 4300 MW Load.



www.manaraa.com

53

5.2.2 Rightmost Eigenvalues Trace

For the rightmost eigenvalues trace, getting the subspace continuation started is a crucial

problem. If no complete spectrum is available, we use a combination of the generalized Cayley

transform and orthogonal subspace iteration, as introduced in Section 4.3. In this way, we

can obtain an invariant subspace of the eigenvalues satisfying a certain real part criterion.

During the continuation process, we keep the dimension of the invariant subspace minimal but

above some critical number. However, as pointed in [36], no device is currently implemented to

guarantee that the continued spectral set contains the rightmost eigenvalues. For this reason,

at regular intervals of 500 MW incremental changes in system load, a routine check will be

performed to ensure that all of the rightmost eigenvalues in the critical margin are included in

the invariant subspaces.
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Figure 5.2 Rightmost Eigenvalues Movement.

Fig. 5.2 shows the results by ICIS for all of the eigenvalues satisfying real part criterion

(Re(λ) > −0.2) when load changes from 614 MW to 6817 MW. Although such an initial load is

unrealistic for the New England system, it is a good practice to test the algorithm robustness
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for study purpose. Thick lines correspond to the complex conjugate pairs of eigenvalues, regular

lines represent real eigenvalues. Since eigenvalues are symmetrical to the real axis, only the

eigenvalues with positive imaginary parts are considered to save the computation time. The

constant step size s used in the continuation method is 61.4 MW, which equals to 10% of the

initial load. Initially, nine eigenvalues are located in the critical region. One more complex

eigenvalue enters into the critical region as load increases to 4176 MW. The tracing process

will end when one of the eigenvalues crosses the imaginary axis. One can see that among the

rightmost eigenvalues, only complex eigenvalues move dramatically as system load changes.

The movement of real eigenvalues is not obvious compared with complex eigenvalues. In other

words, complex eigenvalues have much bigger eigenvalue sensitivities than real eigenvalues in

this case. If these real eigenvalues (or any other complex eigenvalue) insensitive to load change

are filtered out during the tracing process based on their sensitivity information, the process

can be further speeded up. In the next chapter, an eigenvalue sensitivity-based method will

be proposed to reduce the number of traced eigenvalues in order to efficiently identify stability

margin boundary.

5.2.3 Least Damping Ratio Eigenvalues Trace

The eigenvalues with least damping ratios less than 10% are traced by ICIS in this case.

For the damping threshold ζc = 0.1 in (4.42), damping angle is θ = cos−10.1 = 84.26o. For

parameter α1 = 1, it can be calculated from (4.43) that parameter α2 = −0.98 − j0.199.

Using the “semi-complex” Cayley transform with the above parameters, the eigenvalues with

the least damping ratio will become the eigenvalues with largest moduli. In addition, only

the eigenvalues with positive imaginary parts are considered since complex eigenvalues are

symmetric with respect to the real axis. Then the subspace iteration method is used to

calculate the dominant eigenvalues that correspond to the largest moduli eigenvalues and

the corresponding eigenvectors. It is used for the initialization and update of the invariant

subspaces.

Table 5.1 gives the traced eigenvalues with the least damping ratio and the load condition
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Table 5.1 Traced Eigenvalues with Least Damping Ratio

No. Load (MW) λi fi (Hz) ζi(%)
1 614 −0.1679 + j7.1878 1.1440 2.34
2 614 −0.2342 + j5.7371 0.9131 4.08
3 614 −0.2547 + j6.1023 0.9712 4.17
4 614 −0.2726 + j6.2658 0.9972 4.35
5 614 −0.3609 + j6.6533 1.0589 5.42
6 614 −0.2744 + j4.0656 0.6471 6.73
7 2640 −0.6702 + j7.5370 1.1996 8.86
8 2640 −0.5620 + j5.9359 0.9447 9.43
9 3070 −0.7734 + j8.1405 1.2956 9.46
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Figure 5.3 Least Damping Ratio Eigenvalues Movement.
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Figure 5.4 Real Parts of Least Damping Ratio Eigenvalues.

at which those eigenvalues are captured during the iterative procedure. Damping ratios of all

of the critical eigenvalues with respect to load variation are plotted in Fig. 5.3. Initially, six

eigenvalues are located in the critical region when the load level is 614 MW. The number of

critical eigenvalues increases to eight and nine during the tracing process when load increases to

2640 MW and 3070 MW, respectively. The real parts of these least damping ratio eigenvalues

are plotted in Fig. 5.4.

5.2.4 Eigenvalue Sensitivity

To verify the accuracy of the proposed method, the eigenvalue sensitivities extracted dur-

ing the ICIS process have been compared with the eigenvalue sensitivities calculated by the

conventional methods. Table 5.2 gives the rightmost eigenvalues (σ > −0.5) and their sensitiv-

ities information when the system load is 4300 MW. The detailed comparison results confirm

that the eigenvalue sensitivities calculated from ICIS are the same as that by the conventional

method. The schematic figure of the complex eigenvalue locations and their sensitivities are
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Table 5.2 Rightmost Eigenvalues and Their Sensitivities at 4300 MW Load

No. λi

ICIS Conventional Method

∂σi/∂p ∂ωi/∂p ∂σi/∂p ∂ωi/∂p

1 −0.0525 + j0.0982 −5.9377E-6 −3.1926E-4 −5.9377E-6 −3.1926E-4

2 −0.1261 + j7.0702 9.4457E-4 −3.0119E-3 9.4457E-4 −3.0119E-3

3 −0.1942 + j4.1239 2.5508E-3 2.8751E-3 2.5508E-3 2.8751E-3

4 −0.2007 + j6.3352 −8.4974E-4 −8.9467E-3 −8.4974E-4 −8.9467E-3

5 −0.2415 + j7.2522 2.1491E-3 1.0440E-2 2.1491E-3 1.0440E-2

6 −0.3305 + j7.9058 9.4690E-4 2.8318E-2 9.4690E-4 2.8318E-2

7 −0.3508 + j6.6306 5.6534E-3 6.5148E-3 5.6534E-3 6.5148E-3

8 −0.3551 + j5.9727 8.3411E-3 −6.2773E-3 8.3411E-3 −6.2773E-3

9 −0.3696 + j0.4187 1.2604E-3 1.0462E-3 1.2604E-3 1.0462E-3

10 −0.4469 + j0.4249 1.7653E-3 1.0829E-3 1.7653E-3 1.0829E-3

11 −0.4735 + j0.4400 1.9227E-3 1.3988E-3 1.9227E-3 1.3988E-3

12 −0.4759 + j0.5232 1.8981E-3 1.8885E-3 1.8981E-3 1.8885E-3

13 −0.4870 + j8.1914 7.4598E-3 3.2961E-2 7.4598E-3 3.2961E-2

14 −0.4935 + j0.7235 −2.1590E-5 4.1323E-3 −2.1590E-5 4.1323E-3

15 −0.0205 −2.7233E-6 −2.7233E-6

16 −0.0985 −4.4064E-7 −4.4064E-7

17 −0.09989 −1.5724E-6 −1.5724E-6

18 −0.09994 −3.8624E-7 −3.8624E-7

19 −0.1016 −2.7436E-6 −2.7436E-6

20 −0.1236 −3.1409E-6 −3.1409E-6

21 −0.1368 −2.9819E-7 −2.9819E-7

22 −0.1598 −7.1009E-6 −7.1009E-6

23 −0.3337 6.4056E-6 6.4056E-6

24 −0.3338 1.1082E-5 1.1082E-5

25 −0.3508 8.4736E-5 8.4736E-5
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Figure 5.5 Rightmost Eigenvalues and Eigenvalue Sensitivities.

plotted in Fig. 5.5. The arrow shows the moving direction of each eigenvalue when the system

load level increases. The length of the arrow shows the relative speed of eigenvalue movement

with respect to the change in load.

During the continuation process, at each predictor step, after solving the matrix equation

set in the predictor, the eigenvalue sensitivities can be obtained as a by-product. As long as

proper re-initialization is performed after the convergence of corrector iterations, matrix Λ0 in

(4.6) is always diagonal in the next continuation iteration, the eigenvalue sensitivities will be

extracted successively during the ICIS process.

Eigenvalue derivatives are extremely useful for determining the sensitivity of dynamic re-

sponses to system parameter variations as well as power system controller design. The eigen-

value sensitivities can be used as an indicator in eigenvalue ranking and selection for small-

signal stability analysis. Since eigenvalue sensitivity quantifies the expected change in the

eigenvalue in response to a change in the parameter. A positive sensitivity indicates that an
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increase in the parameter value will increase the eigenvalue. An eigenvalue sensitivity-based

method will be proposed in the next chapter to efficiently identify the oscillatory stability

margin and damping margin boundaries.

Furthermore, the eigenvalue sensitivity provides useful information for power system plan-

ning and control. By examining the sensitivity of critical eigenvalues with respect to the specific

control or operating parameters when the parameters experience changes, one can determine

possible measures to improve the small-signal stability of the system.

Compared with the conventional methods, the advantages of eigenvalue sensitivity calcu-

lation using ICIS are as follows.

• The computations of the inverse of Gy and the reduced Jacobian matrix As are avoided

since the calculation is in a structure-preserving formulation;

• Left eigenvector calculation is avoided. The conventional method differentiates (3.7) at

first, then to solve the new equation set (3.10), introduces the left eigenvector ψi to

calculate the eigenvalue sensitivity λ̇i. If there is a way to solve the equation set (3.10)

directly, there is no need to use the left eigenvector in calculating eigenvalue sensitivity.

In the proposed ICIS algorithm, instead of using the left eigenvector information, a

normalization condition for the invariant subspace is introduced. We then get a bordered

equation set of Sylvester type, and the bordered Bartels-Stewart algorithm is used to solve

it efficiently. With proper initialization in the predictor step, the eigenvalue sensitivities

can be achieved as a by-product during the process without the need of left eigenvector.

5.2.5 Oscillatory Stability Margin Boundary Estimation

To identify the oscillatory stability margin, reference [39] proposes an eigenvalue index to

identify the critical eigenvalue to be traced by an integration-based method. In [62], a voltage

stability index using tangent vector is developed to identify “weak” buses in power system

that are most prone to voltage collapse. In [26], various indices based on eigenvalue and

singular values are proposed to detect and predict oscillatory instabilities associated with Hopf

bifurcations in power systems for online applications. For the ICIS method, the eigenvalue
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sensitivities are by-products. At each iteration, we not only know the location of each traced

eigenvalue, but also the direction and speed of the eigenvalue movement. Therefore, we can

make use of this information to identify critical eigenvalues and estimate the stability margin.

For the ith eigenvalue λi (λi = σi + jωi) traced by ICIS, the following eigenvalue index

(EI) is defined as in [39]:

EIi = −σi

σ̇i
(5.1)

where σ̇i = ∂σi/∂p = δii, which is the ith row, ith column element of the matrix ∆0 in (4.8).

∆0 provides the traced eigenvalues sensitivity information when the parameter (such as the

load level) changes. So the eigenvalue index is very easy to calculate.

Once we know the eigenvalues and their derivatives at a certain load level pk, based on

Newton’s method, the margin boundary with respect to λi is

MBi
k = pk −

σi

σ̇i
= pk + EIi (5.2)

where MBi
k is the estimated margin boundary based on the ith eigenvalue at the kth iteration.

So the stability margin boundary at the kth iteration can be predicted as

MBk = min{MB1
k,MB2

k, . . . ,MBr
k}. (5.3)

After each iteration, the corresponding margin boundary can be obtained easily. It can tell

us approximately how far the system’s operating point is away from the instability boundary.

Moreover, the step size s can be adjusted automatically from the margin boundary information.

In this example, the rightmost eigenvalues together with their sensitivities information are

used to define the critical eigenvalue set. The critical eigenvalues mean the eigenvalues that

are most likely to cross the imaginary axis and affect the stability of the system. To define the

critical eigenvalues, first the eigenvalues satisfying a certain real part criterion are calculated by

the Cayley transform, then ICIS is used to trace these eigenvalues. The sensitivities information

and the estimated stability margin boundary for each eigenvalue can be obtained, too. During

the continuation process, the eigenvalues that are moving away from the imaginary axis or

have smaller sensitivities corresponding to bigger estimation margins will be filtered out to

save computational cost. As a result, only a small number of the dominant eigenvalues need to
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be traced to estimate the stability margin boundary. This is useful because these eigenvalues

are most critical to the system stability change even though they may not necessarily be the

least stable modes for a particular operating condition.

5.2.6 Close Eigenvalues Trace
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Figure 5.6 Close Eigenvalues Movement with Load Increase.

One advantage of the invariant subspace-based method over the derivative-based method

is the treatment of eigenvalues with multiplicity and very close eigenvalues.

For the New England system, Fig. 5.6 gives the movement of the two close real eigenvalues

with load variation obtained by the ICIS method. These two eigenvalues #1 and #2 correspond

to λ17 and λ18 in Table 5.2, respectively. It shows that the ICIS method can be used to trace

and differentiate very close eigenvalues too.

For example, assume that there are a cluster of eigenvalues which are very close to one

another in a power system. Suppose we are interested in one or more specified eigenvalue

trajectories. For the traditional methods (such as the Arnoldi method), we can only get a
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bunch of discrete eigenvalues in the complex plane. It is difficult to associate these close

eigenvalues for different parameter values. If the ICIS method is used to trace the movement

of these eigenvalues, we can easily get the accurate trajectories of the close eigenvalues, as

shown in Fig. 5.6.

Further advantages of ICIS over the conventional methods in treating close eigenvalues will

be given in the next subsection.

5.2.7 Eigenvalues Collision Identification

Fig. 5.7 shows the eigenvalues collision in the New England system captured by ICIS

without re-initialization when load increases from 4975 MW to 5902 MW. Fig. 5.8 shows a

three-dimensional figure of eigenvalues collision for better illustration. In the beginning, when

the load condition is 4975 MW, there are two real eigenvalues in the system, −1.4532 and

−1.3751. With the increase in load, the two real eigenvalues (denoted by “o” and “+” in

Fig. 5.7) are moving closer and finally collide at 5835.2 MW load level. As the load continues

to increase, they will form a pair of complex conjugate eigenvalues and move apart, as shown

in Fig. 5.8. Similar phenomenon has also been observed in [1]. It is indicated as a node-focus

(NF) point.

The mathematical description of the advantages of ICIS in treating close or multiple eigen-

values is described as follows. In linear algebra, a defective matrix is a square matrix that does

not have a complete basis of eigenvectors, and therefore is not diagonalizable. In particular, for

an n×n matrix As, the matrix is defective if and only if it does not have n linearly independent

eigenvectors. In the case of close or multiple eigenvalues, As is defective (or almost defective),

and the computed eigenvectors corresponding to the relevant eigenvalues will be almost linear

dependent. In addition, a small perturbation in matrix As may yield the change of As from a

defective matrix to a non-defective matrix. This leads to a challenging numerical question for

this scenario [12]: How can we compute the eigenvalues and eigenvectors in an efficient and

accurate manner?

The convergence of the ICIS method for close eigenvalues and eigenvalues collision can
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Figure 5.7 Eigenvalues Collision Captured by the ICIS Method.
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Figure 5.8 Three-Dimensional Graph of Eigenvalues Collision.
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be explained mathematically as follows. In the case of close or multiple eigenvalues, the

corresponding eigenvectors are not unique. This has the consequence that the eigenvectors

corresponding to a tight cluster of eigenvalues will be ill-conditioned. In addition, a small

perturbation of a matrix may result in a large change in its eigenvalues. This affects both the

performance and the error bounds of the conventional eigenvalue computation methods such as

Newton’s method [24]. It also makes the computation of derivatives numerically ill-conditioned

[41], since the Jacobian becomes ill-conditioned in case of nearby eigenvalues and singular for

defective eigenvalues using Newton’s method.

It is well known that invariant subspaces of a matrix tend to be more stable than eigen-

vectors. For interacting eigenvalues (such as eigenvalue collision, strong resonance, etc.), the

eigenvectors associated with the interacting eigenvalues are highly unstable. Hence, the eigen-

value and eigenvector derivatives-based tracing method in [39] will fail in this case. However,

the invariant subspace that represents the span of these interacting eigenvalues is much better

conditioned, as pointed out in [30]. Therefore, it is of great importance to develop algorithms

to identify and trace the stable invariant subspaces.

In order to circumvent the difficulties associated with multiple eigenvalues, an invariant

subspace is used to follow these eigenvalues simultaneously. Although in this case, the indi-

vidual eigenvectors are ill conditioned, the space spanned by these eigenvectors is an invariant

subspace, which does not need to be sensitive to perturbations in the matrix. The invariant

subspace associated with a cluster containing those two eigenvalues can be well determined,

if the cluster is well separated from the remaining eigenvalues [84]. As a result, the invariant

subspace-based method will work much better in such cases. When applying the ICIS method,

the matrices of the equation set for the invariant subspace (4.1) are not ill-conditioned even

though square matrix As has close or multiple eigenvalues. The continuation procedure pro-

vides bases of the invariant subspaces that depend smoothly on the parameter as long as the

continued spectral subset does not collide with another eigenvalue.

The invariant subspace-based method provides us an efficient and robust way to deal with

these issues. When λ is one of a set of r ill conditioned eigenvalues (close or multiple), one
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should still be able to determine accurately an n×r matrix X and an r×r matrix M such that

AsX = XM , where the columns of X accurately define the relevant invariant subspace. Con-

sequently, we can use ICIS to trace those eigenvalues without having any convergence problem.

Similarly, the ICIS method can be used to investigate the interaction of different oscillatory

modes (such as subsynchronous resonance) and model resonance [27] in power systems.

5.3 Low-Frequency Oscillation

5.3.1 Determination of Electromechanical Modes

For ∆ẋ = As∆x, where As is an n × n matrix, there are n eigenvalues for any given

equilibrium point. To choose the eigenvalues which are strongly related to part of the state

variables (or a kind of state variables), the concept of relative coefficient will be introduced.

For example, for the low-frequency oscillation problem, the eigenvalues which are strongly

associated with ∆ω and ∆δ (electromechanical modes) should be selected. Those eigenvalues

are the eigenvalues corresponding to the low-frequency oscillation. It is not reliable to make

the judgment only based on the frequency information of the eigenvalues.

For the low-frequency oscillation, the electromechanical relative coefficient ρi of the complex

eigenvalue λi (or participation ratio [85]) is defines as

ρi =

∣∣∣∣∣∣∣∣∣

∑
xj∈(∆ω,∆δ)

pji∑
xj /∈(∆ω,∆δ)

pji

∣∣∣∣∣∣∣∣∣ (5.4)

where pji is the participation factor similar to the definition in (3.27). It gives a measure of

the relative participation of the jth state variable in the ith mode λi.

For a power system model, if any of its eigenvalues λi satisfies ρi > 1

λi = σi ± jωi fi = ωi/(2π) ∈ 0.2 ∼ 2.5Hz
(5.5)

then we can say that λi is a low-frequency oscillation mode (or electromechanical mode).

In the New England power system, we calculate all of the 89 eigenvalues when the load

condition is 798 MW. There are totally 24 conjugate pairs of complex eigenvalues. If we only
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Table 5.3 Relative Coefficients of the New England System

No. λi fi (Hz) ρi States
1 −0.1681± j7.1869 1.14 105.9256 δ1, ω1

2 −0.2643± j6.1664 0.98 50.6123 δ4, ω4

3 −0.2384± j5.7765 0.92 37.1478 δ2, ω2

4 −0.2739± j6.2882 1.00 27.5098 δ9, ω9

5 −0.3571± j6.6677 1.06 20.8464 δ3, ω3

6 −0.2732± j4.0720 0.65 18.1027 ω10, δ5
7 −0.9968± j6.8994 1.10 7.3933 ω6, δ6
8 −0.9382± j5.6801 0.90 5.7617 ω5, δ5
9 −1.3439± j7.3976 1.18 5.3627 δ8, ω8

10 −1.3967± j1.4172 0.23 0.0067 E′
q7, Rf7, Efd7

11 −9.2942± j7.1681 1.14 7.6721E-4 Rf4, Vr4

12 −0.7738± j1.3083 0.21 5.3390E-4 E′
q10, Efd10

13 −9.3956± j7.3198 1.17 3.0516E-4 Vr3, Rf3

14 −10.3001± j3.4377 0.55 4.2978E-5 Vr2, Rf2

15 −11.9004± j13.0509 2.08 3.4200E-5 Vr1, Rf1

Table 5.4 Participation Factor and State Information of Eigenvalue λ6

Participation Factor State
0.1755 ω10

0.1154 δ5
0.0879 ω5

0.0856 δ4
0.0855 δ6
0.0734 δ7
0.0613 ω4

0.0588 ω6

0.0519 ω7

0.0469 δ9
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consider the eigenvalues whose imaginary parts are bigger than zero, there are 15 of the 48

complex eigenvalues whose frequencies are between 0.2 Hz and 2.5 Hz. Table 5.3 gives the

15 complex eigenvalues and their relative coefficients information. There are nine complex

eigenvalues (λ1 ∼ λ9) satisfying the criterion described in (5.5). So we can determine that

the system has nine electromechanical modes. Since the electromechanical oscillation modes

involve the generator swing equations, their number is one less than the number of generators

in the system. For a power system with n generators, there are (n − 1) electromechanical

modes in the system. The New England power system has ten generators, so it has nine

electromechanical modes, which matches the results in Table 5.3.

To verify the results in Table 5.3, we can calculate the participation factor of each mode

for modal analysis. Table 5.4 describes the participation factor and the corresponding state

information for the eigenvalue λ6 = −0.2732 ± j4.0720. The participation factor information

shows how strong each state will be related when the mode is excited. From the participation

factors, we see that λ6 is strongly related to states ω10 and δ5. Similarly, we can calculate

the relatedness of other eigenvalues with state variables. The detailed results are shown in

Table 5.3. It can be seen that the first nine modes (λ1 ∼ λ9) are strongly related to the angle

or speed of the generators, which confirms that they are the electromechanical modes of the

system.

To further investigate the relationship between each oscillation mode and the state vari-

ables, we can plot the mode shapes (normalized eigenvector components corresponding to rotor

speed of the generators) to have a visual analysis of the rotor angle modes. Fig. 5.9 describes

the participation factors associated with the mode λ6. Since the participation factors are

generally indicative of the relative participation of the respective states in the corresponding

modes. Fig. 5.9 shows that among the 89 state variables (x1 ∼ x89), the mode λ6 is strongly

related to state x82(ω10), x37(δ5), x38(ω5), x28(δ4), x46(δ6), and x55(δ7), etc. Fig. 5.10 shows

the mode shape of rotor angle modes corresponding to λ6. The mode shape gives the relative

activity of the state variables when a particular mode is excited. We can see that the big swing

happens between generators G10 and G5, and the swings among other generators are much



www.manaraa.com

68

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

State Number

P
ar

tic
ip

at
io

n 
M

ag
ni

tu
de

Figure 5.9 Participation Factors Associated with Eigenvalue λ6.
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smaller. It furthermore verifies the participation factor results.

5.3.2 Mode Tracing and Interaction

In order to apply the ICIS method to investigate the interaction of oscillatory modes, we

first try to use ICIS to trace the movement of a set of complex eigenvalues with load variation.

Fig. 5.11 shows the eigenvalues movement of the nine electromechanical modes. The load

scenario is the same as shown in Fig. 5.2. The ‘+’ represents the starting point (614 MW

load), and ‘o’ represents the end point (6817 MW load). It can be seen that the eigenvalues

movement is very nonlinear. With the increase in load, the direction and speed are changing

too. The ICIS method provides us an efficient and accurate way to trace the trajectory of

eigenvalues movement.
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Figure 5.11 Electromechanical Modes Movement with Load Change.

Fig. 5.12 shows the eigenvalues movement with intersection which is part of the magnifica-

tion of Fig. 5.11. The load increases from 1670 MW at the starting point to 2200 MW at the

end point. During the increase in load, the two complex eigenvalues will intersect each other.
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Figure 5.12 Magnification of Eigenvalues Movement with Intersection.

It can be observed that the intersection causes sharp turn in the eigenvalues movement.

The methodology of the ICIS method for low-frequency mode tracing can also be applied

to investigate the interaction between difference electromechanical modes or inter-area oscilla-

tions in large-scale power systems. The application of ICIS to investigate a special eigenvalue

interaction phenomenon in power systems is described in the next section.

5.3.3 Discussions

It is well-known that power system stabilizers are very efficient to damp the electromechan-

ical oscillations in interconnected power systems. When the stabilizers are correctly tuned, the

resulting damping control is robust. ICIS provides us a useful tool not only for power system

operation but also for power system controller design. It utilizes the linearized system analysis

to get a better understanding of power system oscillations and help ensure the system security.

In addition, it can also be applied to the parameter setting of power system stability controller,

such as power system stabilizers. Reference [44] describes the design, location and tuning of
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PSS in detail.

ICIS can also be applied for the evaluation of power system stabilizer performance for

changing system operating conditions. In the small-signal performance, the critical eigenvalues

corresponding to the dominant modes need to be traced under a range of system conditions in

order to verify the effectiveness of power system stabilizers.

5.4 Subsynchronous Resonance Analysis

5.4.1 Introduction

SSR is a power system dynamic oscillation phenomenon which is caused by the electrical

resonance of the synchronous generator and the series capacitor compensated transmission

lines. The formal definition of SSR is provided by the IEEE [45]:

Subsynchronous resonance is an electric power system condition where the electric network

exchanges energy with a turbine generator at one or more of the natural frequencies of the

combined system below the synchronous frequency of the system.

In power systems, series capacitors are being installed by many electric utilities to increase

the power transfer capability of the transmission lines, as well as to improve the stability of

the system. However, the occurrence of undesirable oscillations may lead to the destruction

of the shaft of the turbine or the loss of synchronism of the generator. SSR is an interaction

between the subelectrical mode and the torsional modes of the generator. There are several

techniques proposed to study the phenomenon of SSR [42, 43]. The most common approaches

are eigenvalue analysis, frequency scanning, and numerical time-domain simulation.

We are interested in the interaction between the subsynchronous electrical mode and the

torsional modes when the capacitor compensation level changes. It has been known that the

number of eigenvalues of a system matrix is equal to the number of state variables of the

system, and each eigenvalue or eigenvalue pair can be associated with a system component.

The conventional eigenvalue computation methods, such as the QR method, can only be used

to calculate all eigenvalues of the state matrix at a given starting point. The identification of

an eigenvalue or eigenvalue pair associated with the corresponding system component can be
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implemented by modal analysis or some other techniques as described in [42, 43, 45]. For the

conventional eigenvalue analysis methods, in order to investigate the SSR phenomenon, the

eigenvalue computation needs to be repeated each time when the compensation level increases

by a small amount, then the modal analysis will be applied to identify eigenvalues. The eigen-

value analysis method calculates all of the eigenvalues of the system. Among these eigenvalues,

we are only interested in the eigenvalues associated with the torsional modes and subelectrical

mode, which are a very small part of whole eigenvalues of the system. For example, for the

IEEE SSR first benchmark model [86], the DAE model of the SMIB system has 27 differential

equations and 11 algebraic equations. Among the 27 eigenvalues, there are five torsional modes

and one subelectrical mode. As the system size increases, the repeated calculation of all the

eigenvalues will cost a lot of extra computational cost.

The ICIS method is used to investigate the interaction between different oscillation modes

that might cause SSR. For any given initial compensation level, the torsional modes and

subelectrical mode are determined through modal analysis. Once those modes are extracted,

the correlation between each torsional mode and the corresponding eigenvalue will not change

as system compensation level increases. The ICIS method can then be used to efficiently

trace the movement of those modes and identify the mode interaction among them. By using

the ICIS method, the repeated calculation of whole eigenvalue spectrum and multiple modal

analysis are avoided.

First, the eigenvalues corresponding to these oscillatory modes are associated with their

invariant subspaces. By applying the continuation method, eigenvalue trajectory with param-

eter change can be obtained from the ICIS method. In this way, the interactions of oscillatory

modes can be illustrated clearly. The relationship between the eigenvalues movement and the

system mode change is explored.

The right eigenvector information obtained from the invariant subspace during the tracing

process is also very useful in SSR analysis. It shows the distribution of modes of response

(eigenvalues) through the state variables. Using this information, we can establish the relative

magnitude of each mode’s response due to each state variable. We can also determine the
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state variables that have little or no effect on a given mode of response, and conversely those

variables that play an important role in contributing to a given response. This often tells the

engineers exactly those variables that need to be controlled in order to mitigate SSR in power

systems.

5.4.2 IEEE SSR First Benchmark Model

We applied the ICIS method to the classic IEEE SSR first benchmark model [86]. The first

benchmark model is recommended by an IEEE committee for SSR study shown in Fig. 5.13,

which is a single machine infinite bus (SMIB) system. It includes the blocking filter, the line

impedance, the series capacitor with dual gap protection for compensation, and the infinite

bus. Also shown in the figure are two fault reactances XF at two different locations. A fault

may be assumed either at bus A or bus B, but not simultaneously. The system data is given

in [86]. Fig. 5.14 gives the schematic diagram of the system with mass spring structure of the

turbine generator. The six torsional masses include a high-pressure (HP) turbine section, an

intermediate-pressure (IP) turbine section, two low-pressure (LPA and LPB) turbine sections,

the rotor of the generator (GEN), and excitor (EX) rotor.

Filter
X1=j0.06                
X0=j0.06

Generator

X1=j0.14P0

PF

X1=j0.50                         
X0=j1.56

R1=0.02        
R0=0.50

XF

A B

XF

XC

Infinite busUnity voltage

Figure 5.13 Network for SSR Studies [86].

Fig. 5.15 illustrates the mode shapes of the turbine generator. The relative rotational dis-

placements of the individual mass for each mode of oscillation are given by the right eigenvector

of the corresponding eigenvalue. The elements of the eigenvector associated with the angle de-

viations are used to draw the mode shape. In the plots shown in Fig. 5.15, each eigenvector

has been normalized so that its largest element is equal to 1. The system has five torsional

modes TM1 (15.7 Hz), TM2 (20.2 Hz), TM3 (25.6 Hz), TM4 (32.3 Hz), and TM5 (47.5 Hz).
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Figure 5.14 A Turbine Generator Power System with Series Capacitor
Compensation.
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The 15.7 Hz TM1 has one polarity reversal in the mode shape as shown in Fig. 5.15 (Sim-

ilarly, TM2 has two polarity reversals, etc.). The polarities of eigenvector elements associated

with the rotors of the HP, IP, and LPA sections are opposite to those associated with the

rotors of the LPB, GEN, and EX sections. This indicates that the rotors of the HP, IP, and

LPA sections oscillate against the other three rotors when TM1 is excited. Furthermore, the

relative rotational displacement between LPA and GEN is the biggest, which suggests that the

eigenvalue corresponding to TM1 is associated with the speed deviation or the angle deviation

of the LPA or GEN rotors, when TM1 is excited. Similar analysis can be performed for the

other four torsional modes. The detailed results are shown in Table 5.5. We will show later

that the results of modal analysis are consistent with the mode shapes of the generator.

Table 5.5 Modal Analysis Results of Torsional Modes

Mode Associated Rotors
TM1 GEN, LPA
TM2 EX, LPB or GEN
TM3 HP, LPA
TM4 LPB, GEN
TM5 HP, IP

5.4.3 Modal Analysis

We are interested in the interaction between the subsynchronous electrical mode and the

torsional modes when the capacitor compensation level changes. At a given starting point, the

modal analysis is performed to identify those eigenvalues.

Table 5.6 gives the eigenvalues, relative coefficients, and the related mode state information

when the compensation level is µ = XC/XL = 0.5%. There are totally six complex pairs of

eigenvalues whose relative coefficients are bigger than 1 (namely λHP , λIP , λLPA, λLPB, λGEN ,

and λEX), which are associated with the speed deviations ωi or the angle deviations δi of the

six turbine sections. These modes are associated with the five torsional modes and one system

mode which represents the oscillation of the entire rotor against the power system. From the

participation factor information corresponding to each pair of complex eigenvalues, each mode
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Table 5.6 Eigenvalues of the 27th-Order System

λi fi(Hz) ρi

λEfd
−499.9866 5.2718E-7

λV R −101.9516 1.1216E-4
λS −30.4085 1.6267E-2
λQ −24.7465 3.2651E-4
λF −8.7917 1.2667E-1
λd,q −6.8764± j397.3176 63.2351 4.4346E-4
λC −6.8103± j356.6095 56.7562 7.2520E-4

λGOV R −4.7377± j0.8194 0.1304 8.1021E-2
λCO −4.6861 1.7277E-2
λCH −2.7893 4.8463E-2
λD −1.9514 4.0666E-2
λEX −0.6557± j127.0134 20.2148 1.5152E4
λHP −0.1818± j298.1767 47.4563 4.4290E6
λLPA −0.165± j160.596 25.5597 4.1971E3
λLPB −0.1507± j99.0491 15.7641 1.2977E3
λRH −0.1416 8.9604E-3
λIP −0.0379± j202.9609 32.3022 2.4394E3
λGEN 0.1952± j7.6846 1.2230 2.0639E1

Table 5.7 Participation Factor and State Information of Oscillation Modes

λHP = −0.1818± j298.1767 λIP = −0.0379± j202.9609 λLPA = −0.165± j160.596
Participation Factor State Participation Factor State Participation Factor State

0.3463 ω2 0.2923 ω4 0.2434 ω1

0.3463 δ2 0.2923 δ4 0.2434 δ1
0.1282 ω1 0.1122 ω5 0.1196 ω3

0.1282 δ1 0.1119 δ5 0.1196 δ3
0.0245 ω3 0.0714 ω3 0.0634 ω5

0.0245 δ3 0.0714 δ3 0.0634 δ5

λLPB = −0.1507± j99.0491 λEX = −0.6557± j127.0134 λC = −6.8103± j356.6095
Participation Factor State Participation Factor State Participation Factor State

0.1618 δ5 0.4401 ω6 0.8182 id
0.1615 ω5 0.4401 δ6 0.7284 iq
0.1317 ω3 0.0182 ω4 0.4761 iD
0.1317 δ3 0.0182 δ4 0.3160 iQ
0.0745 δ1 0.0160 δ5 0.2639 ECd

0.0745 ω1 0.0159 ω5 0.2633 ECq
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can be associated with a system component. For example, Table 5.7 shows the participation

factors and the corresponding state variables information related to five torsional modes and

one subelectrical mode. The participation factor pij is a measure of the relative participation

of the state variables xi and the oscillation mode λj . We know that the state variables id and iq

are connected to the subelectrical mode EM. Based on the participation factor information, it

can be seen that eigenvalue λC corresponds to EM. From the eigenvalue frequency information

shown in Table 5.6, λLPB is corresponding to TM1 since λLPB has the frequency of 15.76 Hz

which is always the same as the natural frequency of TM1 (15.7 Hz). From Table 5.7, TM1 is

associated with the state variables δ5 and ω5 which correspond to the generator rotor GEN.

It matches with the modal analysis result of TM1 in Table 5.5. TM2 is related to the state

variables δ6 and ω6 representing the excitor rotor EX. Similar analysis shows that TM3, TM4,

and TM5 are associated with HP, LPB, and IP sections, respectively. The participation factor

results are in accordance with the mode shapes of the generator shown in Fig. 5.15 and in

Table 5.5.

5.4.4 Numerical Results

Table 5.8 shows the information of the six oscillatory modes (one subelectrical mode EM

and five torsional modes TM1 ∼ TM5) obtained from the modal analysis results at the com-

pensation level µ = 0.5%. From these eigenvalues, an orthonormal basis for the subspaces

corresponding to these six eigenmodes can be calculated. Once the invariant subspace needed

for the initialization is obtained at the starting point, then the ICIS method can be used to

trace the eigenvalue trajectory of these oscillatory modes easily with the change in compensa-

tion level. The interactions between the EM and different TMs that will result in SSR can be

identified subsequently.

The numerical results of the ICIS method are shown in Figs. 5.16–5.19. In order to better

investigate the mode interactions, the step size s is chosen to be a constant value of 0.5%, which

means the compensation level is increased by 0.005 at each iteration during the continuation

process until it reaches 100%. It should be mentioned that this variation is for research purpose.
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Table 5.8 Oscillatory Modes Traced by the ICIS Method

Mode λi

EM −6.8103 + j356.6095
TM1 −0.1507 + j99.0491
TM2 −0.6557 + j127.0134
TM3 −0.165 + j160.596
TM4 −0.0379 + j202.9609
TM5 −0.1818 + j298.1767
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Figure 5.16 Eigenvalues Movement of Different Oscillatory Modes when
the Compensation Level Changes from 0.5% to 100%.
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Figure 5.19 Imaginary Parts of the Eigenvalues Movement with the
Change in Compensation Level.

Typically the inductive reactance of a transmission line is compensated to between 25% and

70% [87]. Fig. 5.16 describes the eigenvalues movement of different oscillatory modes with the

change in compensation level. It gives a whole picture of the eigenvalues movement in the

complex plane. Fig. 5.17 shows the mode interaction between subelectrical mode EM and the

torsional mode TM4 , which is the magnification part of Fig. 5.16. The ‘+’ and ‘o’ represent

the starting and ending points of the eigenvalue trajectory, where the compensation levels

are 14.6% and 44.7%, respectively. Figs. 5.18 and 5.19 show the real and imaginary parts of

the oscillatory modes in terms of the compensation level. From Figs. 5.16 and 5.18, we can

see that there are unstable eigenvalue modes of the mass-spring system when the capacitor

compensation changes. For example, from Fig. 5.18, it can be seen that eigenvalue mode

is unstable when compensation level µ ∈ (20.6%, 45.1%) for TM4, (44%, 57.9%) for TM3,

and (64.6%, 100%) for TM1. There is also the coexistence of two unstable eigenvalue modes

simultaneously. For example, both TM4 and TM3 are unstable when µ is between 44% and

45.1%. When the frequency of the subelectrical mode is equal to one of the torsional modes
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(such as µ = 33% for TM4, µ = 51% for TM3, and µ = 84.4% for TM1), the mode interaction

happens. The mode interaction causes the sharp turns of eigenvalues movement and certain

torsional modes to become unstable, as shown in Figs. 5.16 and 5.18. From Figs. 5.17 and

5.19, it can be seen that as µ increases from 14.6%, the impact of EM on torsional mode TM4

increases and causes TM4 to move from the left half plane closer to the right half plane. At

the same time, the imaginary part of EM decreases and becomes closer to the imaginary part

of TM4. The interaction between EM and TM4 near its natural frequency 32.3 Hz (ω = 203

rad/sec) causes TM4 to cross the imaginary axis at µ = 20.6% and become unstable. When

µ increases to 45.1%, TM4 crosses the imaginary axis to come back into the left half complex

plane and becomes stable again. For comparison purpose, we also tested the results using the

conventional method using MATLAB routine to calculate the whole spectrum of eigenvalues.

The results of the ICIS method match the results of the conventional method very well. So we

can see that ICIS provides us an efficient and accurate way to identify the interacting dynamic

phenomena. It is also a useful tool to investigate the interaction between different oscillation

modes that could cause SSR.

An interesting phenomenon observed from Figs. 5.16 and 5.18 is that the movement of real

part of EM is approximately symmetrical to the movements of real parts of TM1 ∼ TM5. In

other words, a certain change in the real part of EM will cause roughly the same amount of

change but in the reverse direction for the sum of the real parts in TM1 ∼ TM5. Further whole

eigenvalue analysis results show that among the 15 eigenvalues other than the six oscillatory

modes in Table 5.6, their movements are very minor. As a result, the sum of the whole 27

eigenvalues is always a constant value regardless of the change in the compensation level.

Mathematically, we know that the sum of all the eigenvalues is equal to the negative of the

coefficient of the degree (n − 1) term in the characteristic polynomial of a matrix. Also the

trace of the matrix (defined as tr(A)) is the sum of its eigenvalues as well. It means that the

sum of the main diagonal of the state matrix in the IEEE SSR first benchmark system has no

relationship with the compensation level. The examination of system state matrix verifies it.
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5.5 Modal Resonance Analysis

Detection of modal resonance (strong or weak resonance, etc.) for a generic power system

model can be a very long process, especially if the studied system is not well known. Based on

the previous research results [27, 28, 29], it is summarized that the following two conditions

need to be satisfied in order to increase the possibility of eigenvalues interaction:

1. Modes must be within a certain frequency range for them to interact;

2. The sensitivity of the eigenvalues with respect to the system parameter must be opposite

to each other.

Since the ICIS method provides us a useful tool to trace any set of critical eigenvalues.

The eigenvalue sensitivities can also be extracted during the process, which can be used to

determine the direction and speed of the eigenvalues movement. Based on the ICIS method,

a heuristic procedure to efficiently identify modal resonance is proposed. Fig. 5.20 shows the

flowchart to identify modal resonance using the ICIS method.

The identification procedure can be described as follows: For a certain initial condition,

the eigenvalues satisfying the above conditions are obtained at first. From the eigenvalue

sensitivities using ICIS, a linear estimation of the eigenvalue movements is predicted to identify

the resonance. Note that the nonlinear and rapid change in the eigenvalue movements yields

poor estimation from ∂λi/∂p as pointed out in [27], we use transformed eigenvalues in the

estimation similar to [27]. The step size will then be adjusted to reflect the estimation results

and the system parameter will be modified accordingly. The iteration is repeated for ICIS

until the model resonance has been identified.

5.6 Conclusion

This chapter applies the improved continuation of invariant subspaces to trace the critical

eigenvalues and identify various interacting dynamic phenomena in power system. With this

approach, one can trace the trajectory of different oscillatory modes with respect to system
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Figure 5.20 Heuristic Procedure to Identify Modal Resonance Using ICIS.
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parameter variation. The ICIS algorithm can trace the nonlinear movement of eigenvalues

efficiently and accurately.

An eigenvalue index is proposed to rank the critical eigenvalues that might cross the imag-

inary axis and estimate the oscillatory stability margin boundary. We can make use of this

information to identify critical eigenvalues that might affect the oscillatory stability, and then

use them to predict the behavior of the system as parameter changes. We can also use the

information to design power system stabilizer or controller to mitigate the oscillations related

to certain modes of interest.

The eigenvalue computation based on invariant subspace is practical and efficient for power

system small-signal stability analysis. By using ICIS, we can trace any set of eigenvalues we

are interested in (such as the rightmost eigenvalues or the eigenvalues with least damping

ratio, etc.). The method is able to handle eigenvalues with any multiplicity and very close

eigenvalues. Eigenvalue collision is also identified by ICIS. The method can be used to identify

the interacting dynamic phenomena in power systems, such as low-frequency oscillation, SSR,

etc. The ICIS method can be applied for the design of power system stabilizer and other

control techniques. A heuristic procedure is proposed to identify modal resonance using the

ICIS method.
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CHAPTER 6. EFFICIENT IDENTIFICATION OF OSCILLATORY

STABILITY MARGIN AND DAMPING MARGIN WITH THE

PROPOSED METHOD

6.1 Introduction

In this chapter, the improved continuation of invariant subspaces together with the ex-

tracted eigenvalue sensitivity information is proposed to identify the oscillatory stability mar-

gin and damping margin. The ICIS method enables us to trace any set of critical eigenvalues

of interest. The eigenvalue sensitivity, a by-product during the ICIS process, will be used to

automatically adjust the step size at each iteration to improve the efficiency of calculation.

The oscillatory stability margin is defined as the amount of load increase for a specified load

scenario which would lead to the onset of oscillations. Mathematically speaking, the system

at the oscillatory stability margin boundary has a simple pair of purely imaginary eigenvalues,

and there are no other eigenvalues on the imaginary axis and in the right half complex plane.

Damping margin is defined as the amount of additional load on a certain pattern of incremental

change in system load that would cause the damping ratio to reach its specified minimum limit.

With respect to the methods based on eigenvalue estimation, such as eigenvalue-based ap-

proaches to identify oscillatory stability margin or damping margin, reference [2] presented an

algorithm to calculate the Hopf bifurcation-related oscillatory margin boundary. The method

starts the iteration at a given initial operating point. After linearizing the DAE model at the

operating point, the system Jacobian matrix is obtained. The eigenvalue with the maximum

real part is chosen as the dominant eigenvalue and is updated by the power method or the

modified Arnoldi method. The step size is selected by the secant method. To speed up the

process, reference [13] discussed different techniques to calculate the critical eigenvalue clusters
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in the small-signal stability analysis of large power systems. The method in [2] considers only

one critical eigenvalue each time. Although the algorithm is fast, it might not work well to

reach the Hopf bifurcation point since we cannot guarantee that the calculated eigenvalue is

the critical eigenvalue that will cross the imaginary axis first as parameter varies. This is

because in general the eigenvalues have a nonlinear behavior which means that determining

which one is the dominant eigenvalue is very difficult. Reference [88] applied genetic algorithm

and decision tree for eigenvalue region prediction in oscillatory stability assessment.

Another way to identify the Hopf bifurcation is through the direct method. Reference

[89] and [90] applied the direct method in the identification of the oscillatory stability margin

boundary. The bifurcation points are the solutions of a set of algebraic equations. In addition,

a transfer function-based Hopf bifurcation algorithm was also proposed in [90] to determine

the eigenvalue crossings of the stability or security boundaries. The direct method can identify

the oscillatory stability margin directly without computing any intermediate operating point.

But solving these nonlinear algebraic equations is also very complex and slow, and sometimes

the traditional Newton-based techniques can lead to difficulties or even failure when the initial

solution is far away from the Hopf bifurcation point.

Reference [38] firstly applied the CIS method for eigenvalue tracing in power systems. In

[38], a bordered version of the Bartels-Stewart algorithm is used to trace the critical eigenvalues

of power system. The Cayley transform is used to map the rightmost eigenvalues to the

eigenvalues with largest moduli, the projected Arnoldi method is then applied to calculate

these eigenvalues. Here we further reduce the computational time with step size control using

the eigenvalue sensitivities from the proposed ICIS in Chapter 4. The eigenvalue sensitivities

will not be prominent without proper re-initialization during ICIS. The sensitivities can be

achieved without adding computation cost.

In [39], a derivative-based method is applied to power system oscillatory stability analysis.

From the eigenvalue sensitivity information, an eigenvalue index is derived to identify the

changing rates and the movement directions of the eigenvalues with respect to change in any

parameter of interest. Compared with [39], the process can be further improved by using other
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efficient dominant eigenvalue computation methods. The ICIS method can play a key role

in it. Moreover, the integration-based method requires the computation of both eigenvalue

sensitivities and eigenvector sensitivities, whereas only eigenvalue sensitivities are used in the

identification process.

By combining the ideas of [38] and [39], an improved algorithm is proposed to trace the

critical eigenvalues of power systems via ICIS by considering the eigenvalue sensitivity informa-

tion. In this chapter, the successive eigenvalue sensitivities extracted from ICIS are proposed

to identify the oscillatory stability margin as well as the damping margin. The ICIS method

provides us an efficient tool to trace any set of critical eigenvalues of interest. The extracted

eigenvalue sensitivities can be used to automatically adjust the step size in continuation iter-

ation to improve the efficiency of calculation. The next sections provide the details about this

approach.

6.2 Oscillatory Stability Margin and Damping Margin Identification Using

Eigenvalue Sensitivity

For the oscillatory stability margin, the issue is to find the critical eigenvalue which will cross

the imaginary axis first and the parameter value where the real part of the critical eigenvalue

equals to zero. As we know, the eigenvalue movement is very nonlinear with the change in

parameter. It is almost impossible to identify the critical eigenvalue before we actually reach

the oscillatory stability margin boundary. This brings the difficulty for identification of the

stability margin. In [38], constant parameter change is assumed until the system reaches the

margin boundary. The eigenvalue sensitivities can provide an indicator to identify the margin

boundaries and speed up the process. A good solution for this problem using eigenvalue

sensitivities is proposed as follows: Given a real part criterion σc (e.g., σc = −0.5), we calculate

the rightmost eigenvalues that satisfy the criterion for an initial parameter value (i.e., Re(λi) >

σc). The critical eigenvalue will be one of those rightmost eigenvalues with proper selection

of σc. The ICIS method is used to trace these rightmost eigenvalues. At each iteration, the

eigenvalue sensitivities will determine the optimal step size of the predictor by using Newton’s
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method. They can also help to eliminate some noncritical eigenvalues to save more computation

cost. The algorithm uses the sensitivities for both determining the critical eigenvalue and

driving it to the imaginary axis.

Suppose q rightmost eigenvalues are traced by ICIS (λi = σi + jωi, σi < 0, i = 1, 2, . . . , q).

The real part of the eigenvalue sensitivity is σ̇i = ∂σi/∂p. Among the q eigenvalues, there are

r eigenvalues with σ̇i > 0(i = 1, 2, . . . , r, r ≤ q), which means those eigenvalues are moving

closer to the imaginary axis and will determine the oscillatory stability margin. The step size

is chosen as

s = min{−σ1

σ̇1
,−σ2

σ̇2
, . . . ,−σr

σ̇r
, smax} (6.1)

where smax is the step size upper limit to reduce the linear estimation error considering the

nonlinear movements of eigenvalues. Another way is to introduce a scaling factor α < 1 to

balance the error when the point is far away from the solution.

p

Real Part

0p 1p

2p0

B

C

D

A

*p

Figure 6.1 Step Size Control Using Eigenvalue Sensitivity.

Fig. 6.1 shows an illustration of how to use eigenvalue sensitivity for step size control. It

describes the movements of real parts of four rightmost eigenvalues (A, B, C, and D) with

respect to parameter p. The dashed lines indicate the slopes of the eigenvalues which are
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the real parts of eigenvalue sensitivities. This information is used to define the optimal load

change to reach the oscillatory stability margin boundary. At parameter value p0, eigenvalue B

gives the optimal step size since the intersection of eigenvalue slope and p-axis has the smallest

load increase. Similarly, eigenvalue D decides the step size at p1, etc. The critical eigenvalue

shifts from eigenvalue B to eigenvalue D at p1. At p2, it can be seen that eigenvalue D is

still the critical eigenvalue because only D has positive real part. Only critical eigenvalue D

will be considered after p2 to further reduce the computation cost, since D is the eigenvalue

that crosses the imaginary axis first. The iteration will stop when it reaches the margin

boundary point p∗. Like Newton’s method, the convergence rate is quadratic once the critical

eigenvalue is determined, which is faster than the secant method proposed in [2] since the latter

is only superlinearly convergent. It should be pointed out that ICIS can capture the critical

eigenvalue shift in tracing a subset of eigenvalues instead of one at a time such as in [39].

It also provides a structure-preserving technique to efficiently calculate critical eigenvalues as

well as eigenvalue sensitivities. Furthermore, instead of repeated eigenvalue calculations by

conventional methods, the ICIS method can trace the movements of eigenvalues as system

parameter varies. Fig. 6.1 also shows that as parameter p moves closer to the boundary point

p∗, Newton’s method provides better linear estimation in the stability margin and step size

adjustment error becomes smaller.

The damping ratio margin can be identified similar to the oscillatory stability margin. The

only question is to calculate the derivative of damping ratio with respect to parameter p. For

eigenvalue λi, the damping ratio is defined as

ζi = − σi√
σ2

i + ω2
i

. (6.2)

Since both ∂σi/∂p and ∂ωi/∂p are available, then the derivative of damping ratio ζi to p

can be derived as follows:

∂ζi
∂p

=

√
1− ζ2

i

σ2
i + ω2

i

(σi
∂ωi

∂p
− ωi

∂σi

∂p
). (6.3)

Fig. 6.2 describes the flowchart for oscillatory stability margin and damping margin iden-

tification using the ICIS method.
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Figure 6.2 Flowchart for Oscillatory Stability Margin and Damping Mar-
gin Identification.
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6.3 Simulation Results

The improved continuation of invariant subspaces with sensitivity for identification of os-

cillatory stability margin and damping margin is tested on the New England 39-bus system

and IEEE 145-bus system, respectively. The detailed numerical results are described in the

following.

6.3.1 New England 10-Generator, 39-Bus System

The New England 39-bus system has been described in Section 5.2.1. The schematic

diagram of the system is shown in Appendix A. The system load level is chosen as the control

parameter p.

Table 6.1 Rightmost Eigenvalues and Their Sensitivities at 4300 MW Load

No. λi ∂σi/∂p −σi/σ̇i

1 −0.3551± j5.9727 8.3411E-3 42.57

2 −0.3508± j6.6306 5.6534E-3 62.05

3 −0.4870± j8.1914 7.4598E-3 65.28

4 −0.1942± j4.1239 2.5508E-3 76.13

5 −0.2415± j7.2522 2.1491E-3 112.4

6 −0.1261± j7.0702 9.4457E-4 133.5

7 −0.4735± j0.4400 1.9227E-3 246.3

8 −0.4759± j0.5232 1.8981E-3 250.7

9 −0.4469± j0.4249 1.7653E-3 253.2

10 −0.3696± j0.4187 1.2604E-3 293.3

11 −0.3305± j7.9058 9.4690E-4 349.1

12 −0.2007± j6.3352 −8.4974E-4 −236.2

13 −0.0525± j0.0982 −5.9377E-6 −8835

14 −0.4935± j0.7235 −2.1590E-5 −2.286E4
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6.3.1.1 Oscillatory Stability Margin Identification

By using the generalized Cayley transform with parameters α1 = 0 and α2 = −1, Table 6.1

gives the 14 complex conjugate pairs of eigenvalues whose real parts are greater than −0.5 at

the base case. The total base case load is 4300 MW. These rightmost eigenvalues and their

sensitivities are corresponding to the complex eigenvalues in Table 5.2 and also plotted in

Fig. 5.5. For each eigenvalue λi, σ̇i = ∂σi/∂p shows the real part of its sensitivity calculated

by ICIS, si = −σi/σ̇i gives the corresponding step size. Positive σ̇i means the corresponding

eigenvalue moves toward the imaginary axis if load increases, negative value means that it

moves away from the imaginary axis. For example, for eigenvalue λ1 = −0.3551 + j5.9727, its

real and imaginary parts of eigenvalue sensitivity are 8.3411E-3 and −6.2773E-3, respectively.

If we use linear estimation to project eigenvalue movement, it means that λ1 will change to

−0.3468+ j5.9664 when the load increases to 4400 MW. In fact, the actual value of λ1 at 4400

MW load is −0.3469 + j5.9656, which is only slightly different from the projected value using

eigenvalue sensitivities. Since eigenvalue movement is very nonlinear, the linear approximation

is accurate for small parameter change and less accurate for large parameter change. Note

that for eigenvalue located in the left half plane, negative σ̇i will result in negative step size,

such as λ12. Therefore, it will not be considered for step size control. Table 6.1 shows that at

base case, λ1 determines the optimal step size s = 42.57, which corresponds to 4257 MW load

increase. We also compared the eigenvalue sensitivity results with the conventional methods

using (3.11) or (3.23), both CIS and the conventional methods gave the same results.

From Table 6.1, it can also be seen that some eigenvalues, e.g., λ13 = −0.0525 + j0.0982,

although very close to the imaginary axis, their sensitivities are very small. On the other

hand, λ1 has much bigger sensitivity though it is far away from the imaginary axis. Con-

sidering eigenvalue sensitivities, λ1 is better than λ13 to be chosen as a critical eigenvalue,

even λ13 is closer to the imaginary axis than λ1. Therefore, it is not reliable to use only the

eigenvalue locations to determine the critical eigenvalues. A natural and reasonable choice is

to use eigenvalue sensitivities as guiding principle in the selection of critical eigenvalues. The

selection criterion of critical eigenvalues should be based on the location, moving direction,
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and movement speed of the eigenvalues of interest.

It should be pointed out that although eigenvalue λ13 is very small and appears to be zero

eigenvalue of the system due to the redundant state variables (such as no angle reference, etc.).

As we know, the zero eigenvalues may appear as very small eigenvalues since they might not be

calculated exactly because of mismatches in the power flow solution and the limited accuracy

of eigenvalue calculation algorithm [78]. In the eigenvalues result, since we have chosen one

of the machines as angle reference and express the angle changes of all other machines with

respect to this reference machine. The redundancy in rotor angle states as well as the zero

eigenvalue is eliminated. Further modal analysis on λ13 shows that it is a mode corresponding

to rotor speed and angle of all the ten generators as a whole part. In other words, it is a very

low frequency mode involving all the generators in the system. The low frequency is caused by

the big inertia constant related to the generator G1 at bus 39. It is an equivalent generator of

the USA-Canada interconnected system. Its dynamic behavior approaches that of an infinite

bus due to its own low impedance and high inertia characteristics which lead to low frequency

mode.

After ranking the eigenvalues using −σ/σ̇ as in (6.1), the next step is to determine the

number of eigenvalues to be traced by ICIS. If we trace more eigenvalues, the effect of critical

eigenvalue shift can be ignored. But at the same time, it will increase the computation cost,

since it is proportional to the number of traced eigenvalues. There should be a trade-off in the

number selection to balance between the speed and the efficiency. From Table 6.1, it can be

seen that there is a relatively big difference in the step sizes between the first six eigenvalues

(λ1, λ2, . . . , λ6) and other rightmost eigenvalues (λ7, λ8, . . . , λ14). As a result, we trace the first

six eigenvalues to identify the oscillatory stability margin.

Fig. 6.3 shows the real parts of all the six eigenvalues at each continuation iteration during

the tracing process with step size control. Fig. 6.4 shows the eigenvalue movement in the

complex plane during the iterative process. Fig. 6.5 shows the system load change during the

iterative process. Each iteration number is highlighted by different symbol. The algorithm

takes only four iterations to converge to the oscillatory stability boundary point, where the
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Figure 6.5 System Load Level Change during the Iterative Process.

critical eigenvalue is λ4 = 0.0004 + j3.5532. Compared with Table 6.1, it can be observed

that the critical eigenvalue changes from λ1 at base case to λ4 after the first iteration. The

integration-based method will not be able to capture the critical eigenvalue change easily, since

only the ranked number one eigenvalue is traced at a time [39]. The final load level is 6536

MW, which is 52% load increase compared with the base case. The exact oscillatory stability

margin is 6526 MW. The difference is 10 MW, which is only 0.15% compared with the actual

margin value. The ICIS method takes only four iterations to accurately identify the oscillatory

stability margin.

To illustrate the effect of different initial points on the number of iterations, we choose

another base case, where the total load is 614 MW. Although this load condition is impractical

for the system, it is useful to test the convergence of the algorithm. Since the load level is

very low at the base case, we select a bigger real part criterion for the rightmost eigenvalues

calculation. Table 6.2 gives the sixteen complex eigenvalues with the real parts greater than

−1. The eigenvalues sensitivities from the predictor and the corresponding step sizes are also
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Table 6.2 Rightmost Eigenvalues and Their Sensitivities at 614 MW Load

No. λi ∂σi/∂p −σi/σ̇i

1 −0.7242± j1.1424 1.1067E-2 65.44

2 −0.5954± j0.4021 8.6522E-3 68.81

3 −0.9656± j5.6576 1.3259E-2 72.83

4 −0.2744± j4.0656 2.0289E-3 135.2

5 −0.3609± j6.6533 2.1570E-3 167.3

6 −0.1679± j7.1878 9.5579E-4 175.7

7 −0.7555± j0.3687 4.2862E-3 176.3

8 −0.6588± j0.5223 2.2707E-3 290.1

9 −0.5683± j0.7362 1.8859E-3 301.3

10 −0.6280± j0.4088 2.0163E-3 311.4

11 −0.6859± j0.5766 1.7563E-3 390.5

12 −0.2547± j6.1023 −4.9348E-3 −51.61

13 −0.2342± j5.7371 −2.0870E-3 −112.2

14 −0.2726± j6.2658 −2.8058E-4 −971.5

15 −0.7725± j1.3083 −6.5960E-4 −1171

16 −0.05245± j0.09891 −1.2141E-6 −4.320E4

shown in the table. The schematic figure of the eigenvalue locations and their sensitivities

are plotted in Fig. 6.6. Similarly, after ranking these eigenvalues using −σ/σ̇, we choose the

first seven eigenvalues (λ1, λ2, . . . , λ7) as the critical eigenvalues based on their locations and

sensitivities, and then use ICIS to trace them.

In order to reduce the linear estimation error, the maximum step size is restricted to 5000

MW for each iteration. Figs. 6.7 and 6.8 show the eigenvalues movement and the system load

change during the iterative process, respectively. It takes only six iterations for the algorithm

to converge to the boundary point, where the critical eigenvalue is λ4 = −0.0022+j3.5627. We

can see that the critical eigenvalue shifts from λ1 to λ4 at the second iteration, since the critical

eigenvalue is λ1 = −0.7242 + j1.1424 at the base case. The final load level is 6522 MW. The

error is 4 MW, which is only 0.06%. It can be seen that although the base load level is much

far away from the oscillatory stability margin, it only takes two more iterations compared with
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Figure 6.8 System Load Level Change during Oscillatory Stability Margin
Identification.

the previous scenario. The proposed method is very efficient to identify the stability margin

boundary. The efficiency of the algorithm comes from the quadratic convergence of step size

control once the critical eigenvalue is determined.

6.3.1.2 Damping Margin Identification

Table 6.3 shows the results of nine least damping ratio eigenvalues with damping ratio less

than 20% at the base case using the “semi-complex” Cayley transform, where the total load is

614 MW. The damping ratio of each eigenvalue and its sensitivity are also shown in Table 6.3.

Suppose we want to identify the damping margin with a damping ratio minimum limit

ζc = 1%. We rank these nine least damping ratio eigenvalues by their corresponding step sizes.

The first six eigenvalues are selected to identify the damping margin based on their initial

damping ratios and the corresponding step sizes si. The maximum step size limit is chosen

as 5000 MW. Fig. 6.9 shows the system load change during the tracing process. Fig. 6.10
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Table 6.3 Least Damping Ratio Eigenvalues and Their Sensitivities at 614
MW Load

No. λi ζi(%) ∂ζi/∂p si

1 −0.9656 + j5.6576 16.82 −2.5674E-3 61.64

2 −1.3762 + j7.3609 18.38 −2.4194E-3 71.83

3 −1.0154 + j6.8708 14.62 −1.5179E-3 89.73

4 −0.2744 + j4.0656 6.73 −5.3398E-4 107.4

5 −0.3609 + j6.6533 5.42 −3.9015E-4 113.2

6 −0.1679 + j7.1878 2.34 −1.0765E-4 124.1

7 −0.2726 + j6.2658 4.35 −3.1536E-5 1061

8 −0.2547 + j6.1023 4.17 5.9545E-4 −53.24

9 −0.2342 + j5.7371 4.08 2.2530E-4 −1367
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Figure 6.9 System Load Level Change during Damping Margin Identifica-
tion.
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Figure 6.10 Damping Ratios of Tracing Eigenvalues during the Iterative
Process.

gives the change in damping ratios of tracing eigenvalues in each iteration. The algorithm

takes six iterations to converge to the damping margin. The critical eigenvalue at the damping

margin boundary is λ4 = −0.0361+ j3.6167 and its damping ratio is 0.997%. The system load

level at damping margin boundary is 6436 MW. At the base case, the critical eigenvalue is

λ6 = −0.1679 + j7.1878 with damping ratio ζ = 2.34%. With the increase in load level, λ4

has the smallest damping ratio and is successfully captured during the iterative process. The

exact damping margin is 6435 MW. So the difference is only 1 MW.

In the computation cost comparison, we compared the performance of the proposed method

with the integration-based method in [39], and repeated eigenvalue calculation. All the methods

are implemented in MATLAB environment and tested for the same case. The simulations are

performed on a computer with Intel Core 2 Duo 2.40 GHz processor and 3.00 GB of RAM.

In the repeated eigenvalue calculation, first the eigenvalues are calculated by Arnoldi method

at each step, then the eigenvalue sensitivities calculated from (3.11) provide the optimal load
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change in (6.1) for the next calculation. The simulation performance is shown in Table 6.4.

In the results, the average computational time to identify the oscillatory stability margin and

damping margin is given for all of the three methods. From the computation cost perspective,

the ICIS method is faster than both the integration-based method and repeated calculation

by the conventional method in the margin identification.

Table 6.4 New England System Simulation Performance

Oscillatory Stability Margin Damping Margin

Average Time of ICIS with
Sensitivity (s)

2.968 2.334

Average Time of Integration-
Based Method (s)

6.145 5.046

Average Time of Repeated
Eigenvalue Calculation (s)

3.794 2.606

6.3.2 IEEE 50-Generator, 145-Bus System

The system is a slightly modified version of the IEEE 50-generator system that was de-

veloped as a benchmark for stability studies [91]. Seven of the generators are represented by

the two-axis model and IEEE AC-4 exciters, whereas the rest of the generators are modeled

only with their swing equations. The total number of eigenvalues is 156, in which 112 are

complex eigenvalues. The loads are modeled as constant power. The base load level is 16.33

GW. The system load level is chosen as parameter p. The schematic diagram of the system is

shown in Appendix B. Two scenarios are studied in the simulation results. Both uniform and

nonuniform changes in load at different buses are considered to show the generic formulation

of the proposed method.

Scenario I: The load scenario is chosen such that the load at each load bus and generation

at each generator bus uniformly increase with the same percentage from the base case loading.

We calculate the rightmost eigenvalues with real parts bigger than −0.25. Fig. 6.11 shows

the locations of the five rightmost eigenvalues at base case which are denoted by the symbol

“o”. After each iteration step, the eigenvalue locations will change and are shown by different
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Figure 6.11 Eigenvalue Movements during the Iterative Process.
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Figure 6.12 Eigenvalues Real Parts during the Iterative Process.
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Figure 6.13 System Load Level Change with Uniform Load Increase.

symbols. It roughly shows the eigenvalues trajectory during the iterative process. Fig. 6.12

gives the real parts of the eigenvalues during the iterative process. The algorithm takes four

iterations to converge to the oscillatory stability boundary point. The critical eigenvalue

switches from λ1 at base load to λ2 at the second iteration. Fig. 6.13 shows the system

load change. The final load level is 19.99 GW, which is 22.4% load increase compared with

the base case.

Scenario II: The load scenario has been chosen with non-uniform changes in load at different

buses. Specifically, among the total 64 load buses, only seven load buses are selected for load

variation. The total load level of the selected load buses is 3.93 GW. To compensate for the

change in load, the generation at each generator bus is increased uniformly by a certain factor.

Fig. 6.14 shows the eigenvalues trajectory during the iterative process. Fig. 6.15 shows the

real parts of the eigenvalues during the iterative process. The algorithm takes four iterations

to converge. Different from the first scenario, the critical eigenvalue λ1 does not change during
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Figure 6.14 Eigenvalue Movements during the Iterative Process.
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Figure 6.15 Eigenvalues Real Parts during the Iterative Process.
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Figure 6.16 System Load Level Change with Nonuniform Load Increase.

the following iterations. Fig. 6.16 shows the system load change. The final load level is 17.50

GW, which is 7.2% total load increase compared with the base case. Specifically, the selected

seven load buses have 29.8% load increase while other load buses remain the same level.

Table 6.5 IEEE 145-Bus System Simulation Performance

Scenario I Scenario II

Average Time of ICIS with
Sensitivity (s)

3.076 3.018

Average Time of Repeated
Eigenvalue Calculation (s)

4.742 4.705

The computation performance of the ICIS method and the repeated eigenvalue calculation

in both scenarios is shown in Table 6.5. The ICIS method is still faster than the repeated

calculation. Furthermore, it is observed from Tables 6.4 and 6.5 that with the increase in

system size, the speedup becomes bigger. The ICIS method has the potential to be applied
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to very large realistic system, since the computation cost of ICIS is only O(rn2), whereas the

conventional method takes O(n3).

6.4 Conclusion

In this chapter, the eigenvalue sensitivity-based continuation of invariant subspaces is pro-

posed to identify the oscillatory stability margin and the damping margin. The novelty of

the work is to successively extract the eigenvalue sensitivities during the ICIS process which

can be used for different applications of interest. The sensitivities are very useful in ranking

eigenvalues and can also be applied to the design of power system controllers. The deter-

mination of the critical eigenvalue is efficiently implemented from the eigenvalue sensitivity

information. The ICIS method accelerates the computations of both the eigenvalue and the

eigenvalue sensitivity. It is used to trace a specific subset of eigenvalues of interest, and adjust

the step size automatically using the eigenvalue sensitivity. With this method, we can identify

both the oscillatory stability margin and the damping margin efficiently and accurately. The

generalized Cayley transform and “semi-complex” Cayley transform are used to calculate a

small subset of eigenvalues of interest for the ICIS initialization. The numerical results on the

New England 39-bus system and IEEE 145-bus system are described to verify the effectiveness

of the algorithm. Results have shown that the ICIS method is an accurate, fast, and robust

method in eigenvalue calculation and margin identification.
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CHAPTER 7. EQUILIBRIUM POINT TRACING AND EIGENVALUE

ANALYSIS WITH THE PROPOSED METHOD

7.1 Introduction

In the previous chapters, we always assume that the matrices A(p) in (3.3) are available

analytically. In reality, the calculation of A(p) includes two steps: calculate the equilibrium

point for a given parameter p, and evaluate the Jacobian matrix A(p) at the given value.

For the second problem, there are different differentiation algorithms to efficiently obtain the

derivatives of a DAE system, such as the automatic differentiation package (ADIFOR) [92].

For the first problem, the equilibrium point requires the calculation of the solution for the

nonlinear system in (2.20), assuming the differential part equals to zero, i.e., ẋ = 0. The

system has (m + n) nonlinear equations with the same amount of unknowns (x, y) for any

given p. Currently, there are three approaches to calculate the equilibrium points which are

summarized as follows:

1. Integration method: This method uses certain integration method to integrate the DAE

system (2.20) until the system reaches the steady state. By definition, this computation

method produces the correct equilibrium point information. However, this is a very

expensive method to compute since the time-domain simulation of power system is very

costly. Another issue is that if the system is not stable at the equilibrium, then the

time-domain simulation will not converge. The integration method will fail in this case.

2. Alternative iteration: This approach decomposes the nonlinear system to power flow

equations and generator equations, and then applies alternative iteration to calculate

the two parts separately until it converges. It is also called two-step procedure in [64].
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The method has the advantage that existing commercial power flow software can be used.

The algorithm can easily be implemented with the combination of existing commercial

software code. The equations for each generator are decoupled and hence can be solved

by a very low-order solution program. The disadvantage is that the number of iterations

might be large depending on the selection of starting point. Consequently, the obtained

equilibrium solution is very dependent on the assumed values for the PV buses and slack

bus. The two-step approach has to be repeatedly performed by adjusting the assumed

voltages and generators output based on a trial and error procedure. Furthermore, the

iterative process might not converge under heavy load condition.

3. Simultaneous iteration: The method applies Newton’s method or other methods to di-

rectly solve the full set of algebraic equations (3.1) obtained by setting the time derivatives

of the dynamic model to zero. It simultaneously solves the system DAEs to obtain the

equilibrium points. The assumptions of PV and slack buses are no longer needed.

In [64], the equilibrium point tracing (EQPT) approach is proposed to trace the equilibrium

points as well as identify the voltage collapse point related to the saddle-node bifurcation. The

saddle-node bifurcation is caused by the singularity of Jacobian matrix A(p) in (3.3). Similar to

CPF [62], the continuation method is applied to calculate system equilibrium manifold defined

by (3.1). During the predictor-corrector procedure, the singularity of the augmented Jacobian

matrix which includes A(p) can be easily avoided by appropriately selecting the continuation

parameter.

During the ICIS process, we apply the simultaneous iteration using Newton’s method to

calculate the equilibrium points with respect to parameter variation. This is particularly

annoying when the value of parameter p is constantly changing as shown in Chapter 5. Fur-

thermore, near the voltage collapse point where the Jacobian A(p) becomes singular, Newton’s

method converges slowly or even does not converge because of the singularity problem. Notic-

ing the continuation method can be applied to the calculation of both equilibrium points and

invariant subspaces, in order to avoid such nested iterations and coordinate different step size

controls for these two problems [36, 93], a continuation-based unified approach which com-
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bines the equilibrium point tracing and critical eigenvalues tracing is proposed in this chapter.

It is called simultaneous branch following in [36] which is the coupling of invariant subspace

continuation and nonlinear equilibrium branch continuation. The detailed description of the

algorithm is given in the following section.

7.2 Continuation-Based Equilibrium Point Tracing and Critical

Eigenvalue Tracing

Considering both (3.1) and (4.5), the equation set for the new combined problem has the

form

S(Φ,Ω,Λ, x, y, p) =

 F (x, y, p)

T (Φ,Ω,Λ, p)

 = 0 (7.1)

where

F (x, y, p) =

 f(x, y, p)

g(x, y, p)

 = 0 (7.2)

T (Φ,Ω,Λ, p) =


fx(p)Φ(p) + fy(p)Ω(p)− Φ(p)Λ(p)

gx(p)Φ(p) + gy(p)Ω(p)

Φ̂T Φ(p)− Ir

 = 0. (7.3)

T (Φ,Ω,Λ, p) in (7.3) is the same as (4.5), and F (x, y, p) in (7.2) is the same as (3.1). In

(7.1), there are totally ((m+ n)(r + 1) + r2) equations and the same number of unknowns for

(Φ,Ω,Λ, x, y). The equation set can be solved by the continuation method along the parameter

path. The predictor-corrector techniques are applied to (7.1). Notice that the first (m + n)

equations do not depend on (Φ,Ω,Λ), so (7.2) and (7.3) can be solved in sequence separately

in both the predictor and corrector.

In the prediction stage, the tangent vector (dx, dy, dp) at p0 is solved from
fx(p0) fy(p0) fp(p0)

gx(p0) gy(p0) gp(p0)

ek



dx

dy

dp

 =


0

0

±1

 (7.4)
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where ek is a unit row vector with all of the elements equal to zero except for the kth one, which

corresponds to the current continuation parameter. The sign on the right hand side indicates

the direction of the predictor and +1 is used when the operating point is on the upper branch

of the solution curve. Generally, the load parameter p is chosen as the continuation parameter,

hence we have k = m+ n+ 1.

Assume (H0, L0,∆0) = (Φ̇(p), Ω̇(p), Λ̇(p)) which is the tangent to (Φ(p),Ω(p),Λ(p)) at p0,

it can be solved from
fx(p0)H0 −H0Λ0 + fy(p0)L0 − Φ0∆0

gx(p0)H0 + gy(p0)L0

Φ̂TH0

 =


−ḟx(p0)Φ0 − ḟy(p0)Ω0

−ġx(p0)Φ0 − ġy(p0)Ω0

0

 . (7.5)

After all of the tangents have been found, the prediction can be made as

x̄1

ȳ1

p̄1

Φ1

Ω1

Λ1


=



x0

y0

p0

Φ0

Ω0

Λ0


+ s



dx

dy

dp

dpH0

dpL0

dp∆0


(7.6)

where s is an appropriate step size.

Once the prediction is made with the tangent, the following correction is performed to find

the equilibrium point
fx(p̄1) fy(p̄1) fp(p̄1)

gx(p̄1) gy(p̄1) gp(p̄1)

ek




∆x

∆y

∆p

 =


f(x̄1, ȳ1, p̄1)

g(x̄1, ȳ1, p̄1)

0

 (7.7)


x1

y1

p1

 =


x̄1

ȳ1

p̄1

 +


∆x

∆y

∆p

 . (7.8)

The Newton iteration process (7.7) and (7.8) will be repeated until it converges. The tech-

nique used in the corrector to calculate the equilibrium point is called local parameterization,
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where the original set of equations is augmented by one equation specifying the value of one

of the unknowns (usually load parameter p). Since fp and gp cannot be null vectors at the

same time, the singularity of the augmented Jacobian matrix can be avoided by appropriately

choosing the continuation parameter.

After the corrector for the equilibrium point calculation is converged, we use the solution

(x1, y1, p1) for the calculation of invariant subspaces in the corrector. The corrector step for

the invariant subspace is
fx(p1)Φk+1 − Φk+1Λk + fy(p1)Ωk+1 − ΦkΛk+1

gx(p1)Φk+1 + gy(p1)Ωk+1

ΦT
0 Φk+1

 =


−ΦkΛk

0

Ir

 . (7.9)

It can be seen that the linear systems arising during the predictor and corrector steps of

(7.1) can be reduced to solve

1. Three linear systems with a bordering of Dx,yF as in (7.4) and (7.7);

2. Three linear systems with a bordering of DΦ,Ω,ΛT as in (7.5) and (7.9).

Both (7.5) and (7.9) will be solved by the bordered Bartels-Stewart algorithm as described

in Chapter 4. As for (7.4) and (7.7), the traditional approach is to use the LU factorization to

decompose the augmented Jacobian matrix, and then solve the linear system in two steps. This

is easy if both the Jacobian A(p) and the augmented Jacobian matrix are well conditioned.

But as pointed out in [94], as the load increases close to the collapse point, A(p) is a nearly

singular matrix so that a naive block elimination strategy to solve (7.4) or (7.7) leads to big

errors. Although this is often acceptable since (7.7) is solved only to compute the Newton

corrections. But of course this does not lead to very robust algorithm. A particular method,

called block elimination mixed (BEM) method, was developed by Govaerts [94] to overcome

this problem. This method can also be used to solve the bordered systems when using the

bordered Bartels-Stewart algorithm to solve (7.5) and (7.9) to improve the robustness and

stability of the computation.
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7.3 Bifurcation Analysis and Voltage Collapse

7.3.1 Critical Eigenvalue Tracing and Bifurcation Analysis

During the continuation process, we can choose any pre-defined set of critical eigenvalues

to trace. The only thing we need to do is to initialize and update the invariant subspaces

corresponding to the critical eigenvalues. Section 4.3 in Chapter 4 describes the initialization

of rightmost and least damping ratio eigenvalues tracing. The tracing of least damping ratio

eigenvalues gives the system damping change when parameter varies and furthermore, can

be used to determine the damping margin for any given scenario. The rightmost eigenvalues

provide the system stability change during the parameter variation. Hopf bifurcation is the

most common bifurcation in power systems. It is related to the oscillatory stability margin.

The oscillatory stability margin boundary corresponds to the point where HB happens. The

bifurcation analysis can be performed from the rightmost eigenvalues tracing. The oscillatory

stability margin can be determined from the rightmost eigenvalues.

It should be mentioned that the least damping ratio eigenvalues and the rightmost eigen-

values can be combined together and traced simultaneously.

7.3.2 Voltage Stability Margin Identification

The voltage collapse is caused either by saddle-node bifurcation when the system Jacobian

becomes singular [64], or limit-induced bifurcation due to a generator hitting its field or ar-

mature current limit [95]. Instead of solving the equilibrium point separately by the two-step

approach, we simultaneously solve the system DAEs to obtain the dynamic state variables x

and the static algebraic variables y (bus voltage magnitudes and angles). The generator field

and armature current limits can be explicitly considered in the framework. The continuation

method is the bridge to link between the equilibrium points tracing and critical eigenvalues

tracing.

During the continuation process, the critical point representing the voltage stability mar-

gin can be identified. This can be done easily because the critical point is the point at which

maximum loading (pmax) occurs before decreasing. Since parameter p is introduced to param-
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eterize the system generation and load level, it increases monotonically. For this reason, the

tangent vector component dp in (7.6) is positive before p reaches its maximum, zero at the

critical point, and becomes negative once it passes the critical point. Thus, the sign of the dp

component can be used to determine whether the critical point has been passed or not.

Furthermore, the rightmost real eigenvalues can be considered as an index to measure the

distance to the voltage collapse point. The stability of an equilibrium point of the DAE system

depends on the eigenvalues of the unreduced Jacobian A(p). The system will experience a SNB

as parameter p increases when A(p) has a zero eigenvalue, i.e., det(A) = 0. Assuming gy is

nonsingular, there is det(A) = det(As)det(gy). The singularity of As implies singularity of A.

Therefore, we may analyze eigenvalues of As to ascertain stability. References [75] and [96]

provide an in-depth analysis of the relation between the singularity of gy and the singularity of

A. As the algebraic equation Jacobian gy is close to singular, its determination becomes very

small as it approaches the impasse surface, and consequently it will cause the determination of

the reduced Jacobian As to become very large due to (3.5). As a result, one of the eigenvalues

will tend to infinity. Similarly, on the other side of the impasse surface, the system has also

an eigenvalue approaching infinity but with an opposite sign. Therefore, there is a change

of system stability properties due to the singularity of the algebraic equation Jacobian. This

bifurcation is called singularity induced bifurcation [97].

Reference [98] investigated the dynamic aspects of PV curve and pointed out that maximum

loadability analysis must include dynamic analysis based on DAE model and not only load flow

analysis. Therefore, by tracing the critical eigenvalue of As that will cause the singularity of

the Jacobian, we cannot only adjust the step size during the continuation method to speed up

the voltage stability margin identification, but also identify the cause of the voltage collapse

through modal analysis on the critical eigenvalue.

Fig. 7.1 gives the flowchart for equilibrium point tracing and margin boundary identification

using the proposed approach.
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Figure 7.1 Flowchart for Equilibrium Point Tracing and Margin Boundary
Identification.
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7.3.3 Step Size Adjustment

In order to identify the bifurcation points such as the node-focus bifurcation, limit-induced

bifurcation, the step size adjustment is needed. A simple and robust method to determine the

bifurcation point is the binary search algorithm (also called the bisection search or half-interval

search). The binary search is a simple and robust search algorithm which has been widely used

in various areas. In [96] and [99], the binary search algorithm is applied to the secure operating

limit determination for voltage security assessment. Similar approach is proposed in the thesis

to identify the bifurcation-related dynamic security margin. For example, for the identification

of NFB point, we are trying to identify the condition under which the critical eigenvalues

change from complex to real. Hence, zero value in the imaginary part is the condition of

passing the NFB point. The procedure can be described as follows (ε is the tolerance):

pk+1 = pk + s;

calculate λk+1;

if Im(λk+1) 6= 0

go to next iteration;

else

right = pk+1;

left = pk;

do while (abs(right− left) > 2ε);

midpoint = (right+left)/2;

calculate λ(midpoint);

if Im(λ(midpoint)) = 0

right = midpoint;

else

left = midpoint;

end if

loop

end if
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Similar process can be used to locate the SIB and NFB points, etc. The voltage stability

margin boundary is identified by adjusting the step size according to the tangent vector and

the critical eigenvalue information as described in the previous section.

7.4 Simulation Results

The continuation-based equilibrium point tracing and eigenvalue analysis is test on the

New England system.

Fig. 7.2 shows the system power-voltage relationships as load changes. The load scenario

is the same as described in Subsection 5.2.1. These curves are generally referred to as the

PV curves or nose curves. They play a major role in helping understand the voltage stability.

Fig. 7.2 shows the voltage magnitudes of six generator buses (buses 30, 33, 36, 37, and 39).

The tracing process will stop after the equilibrium point passes the nose point and moves to

the lower branch. Fig. 7.3 describes the critical eigenvalues movement. The arrows give the

direction of eigenvalues movement as load increases. The symbols ‘+’ and ‘o’ represent the

starting and ending points of the eigenvalue trajectories. Figs. 7.4 and 7.5 show the real and

imaginary parts of the critical eigenvalues, respectively. The initial load condition is 4300 MW,

which is the same as the scenario in Subsection 6.3.1.1. As we know, the critical modes that

will cross the imaginary first are λ1,2 = −0.1942±j4.1239 at the base case. For simplicity, only

these two eigenvalues are traced in order to determine the steady state stability of an operating

point. The bifurcation points and margin boundaries will be captured as load increases. It

should be pointed out that the critical eigenvalue identification by eigenvalue sensitivity as

described in Chapter 6 can also by applied here to speed up the process.

We trace the movement of equilibrium point and critical eigenvalues λ1,2 as load changes.

At a loading of 6526 MW, this complex pair of eigenvalues cross over into the right half

complex plane. From the eigenvalue sensitivity, we have ∂Re(λ1,2)/∂p 6= 0. Since there is no

other eigenvalue with zero real part or on the right half plane, the system loses stability due to

the occurrence of HB. When load increases to 8830 MW, the complex pair collide and break

into two real eigenvalues. This indicates a NFB and is identified by the step size adjustment
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described before. As the load is increased further, one of these two eigenvalues moves further

toward positive infinity, and at a loading of 9505 MW, it turns from positive infinity into

negative infinity. It indicates a SIB point. At the same time, the other one moves toward the

origin, and at 11688 MW loading level, the real eigenvalue becomes zero, which corresponds to

the voltage stability margin boundary. The unstable operating region lies between 6526 MW

and 11688 MW. With the increase in load from the base case, the system undergoes a sequence

of bifurcations namely: HB → NFB → SIB → SNB. These bifurcation points are also shown

in Fig. 7.2. All of them have been successfully captured by the proposed method.

7.5 Conclusion

This chapter proposes a continuation-based approach to combine the equilibrium point trac-

ing and eigenvalue tracing for the bifurcation analysis of power systems. EQPT and ICIS are

formulated and solved simultaneously in a unified framework using the continuation method.

The singularity of the Jacobian at the voltage collapse point and the singularity of the algebraic

equation Jacobian at SIB are avoided. Different step size controls can be coordinated in the

algorithm to efficiently trace the equilibrium point and critical eigenvalues as well as identify

the voltage stability margin.

Bifurcation analysis can be performed during the tracing process to identify various types

of bifurcations, such as node-focus, saddle-node, Hopf, limit-induced, and singularity-induced,

etc. The proposed approach is a useful tool to investigate the steady state as well as the

dynamic behavior of power systems.
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CHAPTER 8. CONTRIBUTIONS AND FUTURE WORK

8.1 Contributions

The contributions of the thesis are as follows:

• Proposed an improved continuation of invariant subspaces that has the following prop-

erties:

- Successively extract the eigenvalue sensitivity during ICIS with proper re-initialization;

- A formal mathematical proof is given to justify the eigenvalue sensitivity that is

derived from ICIS. It is also verified by numerical results.

- An efficient update of invariant subspace for ICIS is proposed.

The ICIS has the following applications:

- Track the movement of rightmost eigenvalues, least damping ratio eigenvalues, and

a specified subset of eigenvalues;

- Trace close and multiple eigenvalues to show the advantage of ICIS over conventional

methods;

- Systematic identification of interacting power system dynamic phenomena, such as

low-frequency oscillations, subsynchronous resonance, model resonance, and node-

focus bifurcation, etc.;

- Proposed an eigenvalue sensitivity-based algorithm to efficiently identify the oscil-

latory stability margin and damping margin.

• The ICIS is integrated with the equilibrium point tracing for overall bifurcation analysis

in power systems.
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- Identification of voltage stability margin and other eigenvalue-related margins with

the proposed method;

- A generalized approach for bifurcation analysis to identify various bifurcations in

power systems, such as Hopf, saddle-node, node-focus, singularity-induced, etc.

• With these proposed approaches, we can get a novel comprehensive invariant subspace-

based framework for power system equilibrium point calculation and small-signal stability

analysis.

8.2 Future Work

1. Apply ICIS for SSR analysis on large power system such as a realistic CORPALS bench-

mark model in [45] to show the effectiveness of the algorithm in big systems.

2. Apply ICIS for the parameter setting of power system stability controller.

3. Apply the parallel computing and sparse matrix techniques in ICIS to further speed up

the computation of critical eigenvalues.

4. Implement RPM for the decoupled time-domain simulation and equilibrium point calcu-

lation.
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APPENDIX A. SCHEMATIC DIAGRAM OF THE NEW ENGLAND

39-BUS SYSTEM
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APPENDIX B. THE IEEE 145-BUS SYSTEM
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